Boundary problems for random walks and large deviations in functional spaces
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 12 (1967) no. 4, pp. 635-654
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Asymptotic properties (in the region of large deviations) of the logarithmic probability that the sample paths of a random walk generated by sums of independent addends or by a Poisson process belong to a given open set in $C(0,1)$ or $D(0,1)$ are under consideration.
			
            
            
            
          
        
      @article{TVP_1967_12_4_a3,
     author = {A. A. Borovkov},
     title = {Boundary problems for random walks and large deviations in functional spaces},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {635--654},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {1967},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1967_12_4_a3/}
}
                      
                      
                    A. A. Borovkov. Boundary problems for random walks and large deviations in functional spaces. Teoriâ veroâtnostej i ee primeneniâ, Tome 12 (1967) no. 4, pp. 635-654. http://geodesic.mathdoc.fr/item/TVP_1967_12_4_a3/
