On the distribution of the statistic of the most powerful test in compound Markov chains
Teoriâ veroâtnostej i ee primeneniâ, Tome 12 (1967) no. 4, pp. 741-746
Cet article a éte moissonné depuis la source Math-Net.Ru
The paper deals with a sequence of outcomes realized after $n$ tests, connected into a compound Markov chain of order $s-1$ with $k$ states and with the transition probabilities of the form $1/k+\alpha/k\varphi(k)$ where $\varphi(k)$ as $k\to\infty$ and $|\alpha|. The statistic of the most powerful test for two simple hypotheses concerning the values of $\alpha$ is considered and some asymptotic properties of this statistic are studied as $n$, $k\to\infty$.
@article{TVP_1967_12_4_a13,
author = {P. F. Belyaev},
title = {On the distribution of the statistic of the most powerful test in compound {Markov} chains},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {741--746},
year = {1967},
volume = {12},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1967_12_4_a13/}
}
P. F. Belyaev. On the distribution of the statistic of the most powerful test in compound Markov chains. Teoriâ veroâtnostej i ee primeneniâ, Tome 12 (1967) no. 4, pp. 741-746. http://geodesic.mathdoc.fr/item/TVP_1967_12_4_a13/