The probability properties of bilinear expansions in Hermite polynomiels
Teoriâ veroâtnostej i ee primeneniâ, Tome 12 (1967) no. 3, pp. 520-531
Voir la notice de l'article provenant de la source Math-Net.Ru
The present paper contains an investigation of the probability meaning of formulas (1) and (4).
According to the basic theorem 2 for sum (1) to be non negative it is nesessary and sufficient that the sequence of coefficients $\{c_k\}$ be the sequence of moments of some probability distribution in finite interval $[-1,1]$.
Some examples of densities comprised in the normal class in the sence of Fré'chet [7] are given here.
@article{TVP_1967_12_3_a9,
author = {O. V. Sarmanov and Z. N. Bratoeva},
title = {The probability properties of bilinear expansions in {Hermite} polynomiels},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {520--531},
publisher = {mathdoc},
volume = {12},
number = {3},
year = {1967},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1967_12_3_a9/}
}
TY - JOUR AU - O. V. Sarmanov AU - Z. N. Bratoeva TI - The probability properties of bilinear expansions in Hermite polynomiels JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1967 SP - 520 EP - 531 VL - 12 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1967_12_3_a9/ LA - ru ID - TVP_1967_12_3_a9 ER -
O. V. Sarmanov; Z. N. Bratoeva. The probability properties of bilinear expansions in Hermite polynomiels. Teoriâ veroâtnostej i ee primeneniâ, Tome 12 (1967) no. 3, pp. 520-531. http://geodesic.mathdoc.fr/item/TVP_1967_12_3_a9/