The probability properties of bilinear expansions in Hermite polynomiels
Teoriâ veroâtnostej i ee primeneniâ, Tome 12 (1967) no. 3, pp. 520-531

Voir la notice de l'article provenant de la source Math-Net.Ru

The present paper contains an investigation of the probability meaning of formulas (1) and (4). According to the basic theorem 2 for sum (1) to be non negative it is nesessary and sufficient that the sequence of coefficients $\{c_k\}$ be the sequence of moments of some probability distribution in finite interval $[-1,1]$. Some examples of densities comprised in the normal class in the sence of Fré'chet [7] are given here.
@article{TVP_1967_12_3_a9,
     author = {O. V. Sarmanov and Z. N. Bratoeva},
     title = {The probability properties of bilinear expansions in {Hermite} polynomiels},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {520--531},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {1967},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1967_12_3_a9/}
}
TY  - JOUR
AU  - O. V. Sarmanov
AU  - Z. N. Bratoeva
TI  - The probability properties of bilinear expansions in Hermite polynomiels
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1967
SP  - 520
EP  - 531
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1967_12_3_a9/
LA  - ru
ID  - TVP_1967_12_3_a9
ER  - 
%0 Journal Article
%A O. V. Sarmanov
%A Z. N. Bratoeva
%T The probability properties of bilinear expansions in Hermite polynomiels
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1967
%P 520-531
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1967_12_3_a9/
%G ru
%F TVP_1967_12_3_a9
O. V. Sarmanov; Z. N. Bratoeva. The probability properties of bilinear expansions in Hermite polynomiels. Teoriâ veroâtnostej i ee primeneniâ, Tome 12 (1967) no. 3, pp. 520-531. http://geodesic.mathdoc.fr/item/TVP_1967_12_3_a9/