On the number of intersections of a~level by a~Gaussian stochastic process.~II
Teoriâ veroâtnostej i ee primeneniâ, Tome 12 (1967) no. 3, pp. 444-457

Voir la notice de l'article provenant de la source Math-Net.Ru

The main result of this paper which is a continuation of [8] is the following theorem: let $\xi_t$ be a stationary Gaussian process with $\mathbf M\xi_t=0$ and $\rho(t)$ be its correlation function. If $$ |\rho''(0)-\rho''(t)|\le\frac c{|\ln||t|^{1+\varepsilon}},\quad|t|\le t_0, $$ and $$ \rho(t)=o\biggl(\frac1{\ln t}\biggr),\quad\rho'(t)=o\biggl(\frac1{\sqrt{\ln t}}\biggr), $$ the moments of up-crossing of level $u$ form a Poisson random stream as $u\to\infty$. This result is a generalisation of a recent Cramer's theorem [10]. In the forthcoming third part of this investigation we'll consider other questions' about intersections by non-differentiable Gaussian processes.
@article{TVP_1967_12_3_a4,
     author = {Yu. K. Belyaev},
     title = {On the number of intersections of a~level by {a~Gaussian} stochastic {process.~II}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {444--457},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {1967},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1967_12_3_a4/}
}
TY  - JOUR
AU  - Yu. K. Belyaev
TI  - On the number of intersections of a~level by a~Gaussian stochastic process.~II
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1967
SP  - 444
EP  - 457
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1967_12_3_a4/
LA  - ru
ID  - TVP_1967_12_3_a4
ER  - 
%0 Journal Article
%A Yu. K. Belyaev
%T On the number of intersections of a~level by a~Gaussian stochastic process.~II
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1967
%P 444-457
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1967_12_3_a4/
%G ru
%F TVP_1967_12_3_a4
Yu. K. Belyaev. On the number of intersections of a~level by a~Gaussian stochastic process.~II. Teoriâ veroâtnostej i ee primeneniâ, Tome 12 (1967) no. 3, pp. 444-457. http://geodesic.mathdoc.fr/item/TVP_1967_12_3_a4/