On the number of intersections of a level by a Gaussian stochastic process. II
Teoriâ veroâtnostej i ee primeneniâ, Tome 12 (1967) no. 3, pp. 444-457
Cet article a éte moissonné depuis la source Math-Net.Ru
The main result of this paper which is a continuation of [8] is the following theorem: let $\xi_t$ be a stationary Gaussian process with $\mathbf M\xi_t=0$ and $\rho(t)$ be its correlation function. If $$ |\rho''(0)-\rho''(t)|\le\frac c{|\ln||t|^{1+\varepsilon}},\quad|t|\le t_0, $$ and $$ \rho(t)=o\biggl(\frac1{\ln t}\biggr),\quad\rho'(t)=o\biggl(\frac1{\sqrt{\ln t}}\biggr), $$ the moments of up-crossing of level $u$ form a Poisson random stream as $u\to\infty$. This result is a generalisation of a recent Cramer's theorem [10]. In the forthcoming third part of this investigation we'll consider other questions' about intersections by non-differentiable Gaussian processes.
@article{TVP_1967_12_3_a4,
author = {Yu. K. Belyaev},
title = {On the number of intersections of a~level by {a~Gaussian} stochastic {process.~II}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {444--457},
year = {1967},
volume = {12},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1967_12_3_a4/}
}
Yu. K. Belyaev. On the number of intersections of a level by a Gaussian stochastic process. II. Teoriâ veroâtnostej i ee primeneniâ, Tome 12 (1967) no. 3, pp. 444-457. http://geodesic.mathdoc.fr/item/TVP_1967_12_3_a4/