A~stochastic integral for operator-valued functions
Teoriâ veroâtnostej i ee primeneniâ, Tome 12 (1967) no. 3, pp. 582-585

Voir la notice de l'article provenant de la source Math-Net.Ru

The definition of a stochastic integral (having properties $(a)$$(r)$) for a certain class of operator-valued functions with respect to random vector-valued measures is given. We also find the covariance operator of the stochastic integral.
@article{TVP_1967_12_3_a20,
     author = {N. N. Vakhania and N. P. Kandelaki},
     title = {A~stochastic integral for operator-valued functions},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {582--585},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {1967},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1967_12_3_a20/}
}
TY  - JOUR
AU  - N. N. Vakhania
AU  - N. P. Kandelaki
TI  - A~stochastic integral for operator-valued functions
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1967
SP  - 582
EP  - 585
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1967_12_3_a20/
LA  - ru
ID  - TVP_1967_12_3_a20
ER  - 
%0 Journal Article
%A N. N. Vakhania
%A N. P. Kandelaki
%T A~stochastic integral for operator-valued functions
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1967
%P 582-585
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1967_12_3_a20/
%G ru
%F TVP_1967_12_3_a20
N. N. Vakhania; N. P. Kandelaki. A~stochastic integral for operator-valued functions. Teoriâ veroâtnostej i ee primeneniâ, Tome 12 (1967) no. 3, pp. 582-585. http://geodesic.mathdoc.fr/item/TVP_1967_12_3_a20/