On $M$-divisibility of stable laws of stable laws
Teoriâ veroâtnostej i ee primeneniâ, Tome 12 (1967) no. 3, pp. 559-562
Voir la notice de l'article provenant de la source Math-Net.Ru
A one dimensional distribution $F$ is called $M$-infinitely divisible ($M$-i. d.) if there exists a sequence of integers $0$ such that for every $n_j$ it equal to the distribution of the product of some $n_j$ independent identically distributed random variables.
It is shown that the stable laws with parameters ($\alpha1$, $\gamma=0$), ($\alpha=1$, $\beta=0$), ($\alpha>1$, $\gamma=0$, $\beta=0$) are $M$-i. d. but the stable laws with parameters ($\alpha>1$, $\gamma=0$, $\beta\ne0$) are not $M$-i. d.
@article{TVP_1967_12_3_a15,
author = {V. M. Zolotarev},
title = {On $M$-divisibility of stable laws of stable laws},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {559--562},
publisher = {mathdoc},
volume = {12},
number = {3},
year = {1967},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1967_12_3_a15/}
}
V. M. Zolotarev. On $M$-divisibility of stable laws of stable laws. Teoriâ veroâtnostej i ee primeneniâ, Tome 12 (1967) no. 3, pp. 559-562. http://geodesic.mathdoc.fr/item/TVP_1967_12_3_a15/