Integral equations and some limit theorems for additive functionals of Markov processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 12 (1967) no. 3, pp. 551-559

Voir la notice de l'article provenant de la source Math-Net.Ru

Integral equation (3) where $V(dy)$ is a signed measure and $p(s,x,y)$ is the transition density function of a Markov process $\xi_t$ is considered. Under some conditions the solution of this equation can be considered as the characteristic function of some functional of the process $$ \int_0^t\frac{dV}{dx}(\xi_s)\,ds $$ where $\frac{dV}{dx}(x)$ is a generalized function. Using the results obtained we prove a limit theorem for additive functionals of a sequence of sums of independent random variables with distributions tending to a stable distribution of index $\alpha$, $1\alpha\le2$.
@article{TVP_1967_12_3_a14,
     author = {N. I. Portenko},
     title = {Integral equations and some limit theorems for additive functionals of {Markov} processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {551--559},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {1967},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1967_12_3_a14/}
}
TY  - JOUR
AU  - N. I. Portenko
TI  - Integral equations and some limit theorems for additive functionals of Markov processes
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1967
SP  - 551
EP  - 559
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1967_12_3_a14/
LA  - ru
ID  - TVP_1967_12_3_a14
ER  - 
%0 Journal Article
%A N. I. Portenko
%T Integral equations and some limit theorems for additive functionals of Markov processes
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1967
%P 551-559
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1967_12_3_a14/
%G ru
%F TVP_1967_12_3_a14
N. I. Portenko. Integral equations and some limit theorems for additive functionals of Markov processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 12 (1967) no. 3, pp. 551-559. http://geodesic.mathdoc.fr/item/TVP_1967_12_3_a14/