Integral equations and some limit theorems for additive functionals of Markov processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 12 (1967) no. 3, pp. 551-559
Voir la notice de l'article provenant de la source Math-Net.Ru
Integral equation (3) where $V(dy)$ is a signed measure and $p(s,x,y)$ is the transition density function of a Markov process $\xi_t$ is considered. Under some conditions the solution of this equation can be considered as the characteristic function of some functional of the process
$$
\int_0^t\frac{dV}{dx}(\xi_s)\,ds
$$
where $\frac{dV}{dx}(x)$ is a generalized function. Using the results obtained we prove a limit theorem for additive functionals of a sequence of sums of independent random variables with distributions tending to a stable distribution of index $\alpha$, $1\alpha\le2$.
@article{TVP_1967_12_3_a14,
author = {N. I. Portenko},
title = {Integral equations and some limit theorems for additive functionals of {Markov} processes},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {551--559},
publisher = {mathdoc},
volume = {12},
number = {3},
year = {1967},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1967_12_3_a14/}
}
TY - JOUR AU - N. I. Portenko TI - Integral equations and some limit theorems for additive functionals of Markov processes JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1967 SP - 551 EP - 559 VL - 12 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1967_12_3_a14/ LA - ru ID - TVP_1967_12_3_a14 ER -
N. I. Portenko. Integral equations and some limit theorems for additive functionals of Markov processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 12 (1967) no. 3, pp. 551-559. http://geodesic.mathdoc.fr/item/TVP_1967_12_3_a14/