On the limit behaviour of the solution of a stochastic diffusion equation
Teoriâ veroâtnostej i ee primeneniâ, Tome 12 (1967) no. 3, pp. 548-551
Cet article a éte moissonné depuis la source Math-Net.Ru
The probability density of the limit distribution of the process $f(\xi(tT))/\sqrt T$ as $T\to\infty$ is found where $$ f(x)=\int_0^x\exp\biggl\{-2\int_{-\infty}^y\biggl[\frac{a(u)}{\sigma^2(u)}-\frac12\frac{\sigma'(u)}{\sigma(u)}\biggr]\,du\biggr\}\frac{dy}{\sigma(y)}, $$ and $\xi(t)$ is the solution of stochastic diffusion equation (1).
@article{TVP_1967_12_3_a13,
author = {G. L. Kulinich},
title = {On the limit behaviour of the solution of a~stochastic diffusion equation},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {548--551},
year = {1967},
volume = {12},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1967_12_3_a13/}
}
G. L. Kulinich. On the limit behaviour of the solution of a stochastic diffusion equation. Teoriâ veroâtnostej i ee primeneniâ, Tome 12 (1967) no. 3, pp. 548-551. http://geodesic.mathdoc.fr/item/TVP_1967_12_3_a13/