On a~class degenerative diffusion processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 12 (1967) no. 3, pp. 540-547
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that the degenerative diffusion processes with the characteristic operators reducing after a change of variables to the form
\begin{gather*}
Lu=\frac12\sum_{ij=1}^na_{ij}(x_1^1,\dots,x_1^n,x_2^1,\dots,x_2^n,\dots,x_N^1,\dots,x_N^n,t)\frac{\partial^2u}{\partial x_1^i\partial x_1^j}+
\\
+\sum_{i=1}^na_i(x_1^1,\dots,x_N^n,t)\frac{\partial u}{\partial x_1^i}+\sum_{i=1}^nx_1^i\frac{\partial u}{\partial x_2^i}+\sum_{i=1}^nx_2^i\frac{\partial u}{\partial x_3^i}+\dots
\\
\dots+\sum_{i=1}^nx_{N-1}^i\frac{\partial u}{\partial x_N^i}+a(x_1^1,\dots,x_N^n,t)u
\end{gather*}
have smooth densities. The proof is carried out by constructing the fundamental solution of the corresponding parabolic equation. For this the classical method of Lévy with some modifications is used.
@article{TVP_1967_12_3_a12,
author = {I. M. Sonin},
title = {On a~class degenerative diffusion processes},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {540--547},
publisher = {mathdoc},
volume = {12},
number = {3},
year = {1967},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1967_12_3_a12/}
}
I. M. Sonin. On a~class degenerative diffusion processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 12 (1967) no. 3, pp. 540-547. http://geodesic.mathdoc.fr/item/TVP_1967_12_3_a12/