An asymptotic expansion for the distribution of the maximum likelihood estimation of a vektor parameter
Teoriâ veroâtnostej i ee primeneniâ, Tome 12 (1967) no. 3, pp. 418-425
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $X$ he a random variable with a distribution function $f(x,\theta)$ depending on a vector parameter $\theta=(\theta,\dots,\theta_r)$. Let $\widehat\theta_n$ be the maximum likelihood estimate of $\theta$ corresponding to a sample of size $n$. It is proved that under certain conditions on $f(x,\theta)$ the distribution function of $\widehat\theta_n$ has an asymptotic expansion on $n^{1/2}$ with the number of terms depending on properties of $f(x,\theta)$.
@article{TVP_1967_12_3_a1,
author = {N. M. Mitrofanova},
title = {An asymptotic expansion for the distribution of the maximum likelihood estimation of a~vektor parameter},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {418--425},
year = {1967},
volume = {12},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1967_12_3_a1/}
}
TY - JOUR AU - N. M. Mitrofanova TI - An asymptotic expansion for the distribution of the maximum likelihood estimation of a vektor parameter JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1967 SP - 418 EP - 425 VL - 12 IS - 3 UR - http://geodesic.mathdoc.fr/item/TVP_1967_12_3_a1/ LA - ru ID - TVP_1967_12_3_a1 ER -
N. M. Mitrofanova. An asymptotic expansion for the distribution of the maximum likelihood estimation of a vektor parameter. Teoriâ veroâtnostej i ee primeneniâ, Tome 12 (1967) no. 3, pp. 418-425. http://geodesic.mathdoc.fr/item/TVP_1967_12_3_a1/