On a~Limit Theorem for an Attrition Game
Teoriâ veroâtnostej i ee primeneniâ, Tome 12 (1967) no. 2, pp. 329-337

Voir la notice de l'article provenant de la source Math-Net.Ru

L. Garding [3] obtained a normal approximation to the probability of winning in an attrition game by the method of moments. Here an another approach to the same problem is developed. Our approach is based on the transition from descrete Markov chains to a continuous diffusion process.
@article{TVP_1967_12_2_a7,
     author = {A. A. Yushkevich},
     title = {On {a~Limit} {Theorem} for an {Attrition} {Game}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {329--337},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {1967},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1967_12_2_a7/}
}
TY  - JOUR
AU  - A. A. Yushkevich
TI  - On a~Limit Theorem for an Attrition Game
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1967
SP  - 329
EP  - 337
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1967_12_2_a7/
LA  - ru
ID  - TVP_1967_12_2_a7
ER  - 
%0 Journal Article
%A A. A. Yushkevich
%T On a~Limit Theorem for an Attrition Game
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1967
%P 329-337
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1967_12_2_a7/
%G ru
%F TVP_1967_12_2_a7
A. A. Yushkevich. On a~Limit Theorem for an Attrition Game. Teoriâ veroâtnostej i ee primeneniâ, Tome 12 (1967) no. 2, pp. 329-337. http://geodesic.mathdoc.fr/item/TVP_1967_12_2_a7/