Some Generalizations of the Boundary Value Problem with Oblique Derivative
Teoriâ veroâtnostej i ee primeneniâ, Tome 12 (1967) no. 2, pp. 380-386
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $D$ be a two-dimensional domain bounded by a smooth closed contour $L$ and let $l$ be a smooth vector field on $L\setminus\Gamma$ where $\Gamma$ is finite. Using probability methods we investigate the bounded solutions of the boundary value problem $\Delta u=0$, $\frac{\partial u}{\partial l}\bigg|_{L\setminus\Gamma}=0$ and prove that they may be uniquely represented in form (2).
@article{TVP_1967_12_2_a16,
author = {A. L. Rozental'},
title = {Some {Generalizations} of the {Boundary} {Value} {Problem} with {Oblique} {Derivative}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {380--386},
year = {1967},
volume = {12},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1967_12_2_a16/}
}
A. L. Rozental'. Some Generalizations of the Boundary Value Problem with Oblique Derivative. Teoriâ veroâtnostej i ee primeneniâ, Tome 12 (1967) no. 2, pp. 380-386. http://geodesic.mathdoc.fr/item/TVP_1967_12_2_a16/