Some Generalizations of the Boundary Value Problem with Oblique Derivative
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 12 (1967) no. 2, pp. 380-386
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $D$ be a two-dimensional domain bounded by a smooth closed contour $L$ and let $l$ be a smooth vector field on $L\setminus\Gamma$ where $\Gamma$ is finite. Using probability methods we investigate the bounded solutions of the boundary value problem $\Delta u=0$, $\frac{\partial u}{\partial l}\bigg|_{L\setminus\Gamma}=0$ and prove that they may be uniquely represented in form (2).
			
            
            
            
          
        
      @article{TVP_1967_12_2_a16,
     author = {A. L. Rozental'},
     title = {Some {Generalizations} of the {Boundary} {Value} {Problem} with {Oblique} {Derivative}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {380--386},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {1967},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1967_12_2_a16/}
}
                      
                      
                    A. L. Rozental'. Some Generalizations of the Boundary Value Problem with Oblique Derivative. Teoriâ veroâtnostej i ee primeneniâ, Tome 12 (1967) no. 2, pp. 380-386. http://geodesic.mathdoc.fr/item/TVP_1967_12_2_a16/
