Some Generalizations of the Boundary Value Problem with Oblique Derivative
Teoriâ veroâtnostej i ee primeneniâ, Tome 12 (1967) no. 2, pp. 380-386

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $D$ be a two-dimensional domain bounded by a smooth closed contour $L$ and let $l$ be a smooth vector field on $L\setminus\Gamma$ where $\Gamma$ is finite. Using probability methods we investigate the bounded solutions of the boundary value problem $\Delta u=0$, $\frac{\partial u}{\partial l}\bigg|_{L\setminus\Gamma}=0$ and prove that they may be uniquely represented in form (2).
@article{TVP_1967_12_2_a16,
     author = {A. L. Rozental'},
     title = {Some {Generalizations} of the {Boundary} {Value} {Problem} with {Oblique} {Derivative}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {380--386},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {1967},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1967_12_2_a16/}
}
TY  - JOUR
AU  - A. L. Rozental'
TI  - Some Generalizations of the Boundary Value Problem with Oblique Derivative
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1967
SP  - 380
EP  - 386
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1967_12_2_a16/
LA  - ru
ID  - TVP_1967_12_2_a16
ER  - 
%0 Journal Article
%A A. L. Rozental'
%T Some Generalizations of the Boundary Value Problem with Oblique Derivative
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1967
%P 380-386
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1967_12_2_a16/
%G ru
%F TVP_1967_12_2_a16
A. L. Rozental'. Some Generalizations of the Boundary Value Problem with Oblique Derivative. Teoriâ veroâtnostej i ee primeneniâ, Tome 12 (1967) no. 2, pp. 380-386. http://geodesic.mathdoc.fr/item/TVP_1967_12_2_a16/