Limit Theorems for Functionals of Sample Functions of a~Stationary Gaussian Process
Teoriâ veroâtnostej i ee primeneniâ, Tome 12 (1967) no. 2, pp. 370-372

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\xi(t)$, $t\in[0,T]$, be a stationary Gaussian process with zero mean. We investigate the conditions for the functionals $$ S_n=\sum_{k=1}^nf_n\biggl(\xi\biggl(\frac knT\biggr)\biggr)\frac Tn $$ to converge to the additive functionals $$ J=\int_0^Tg(\xi(t))\,dt. $$
@article{TVP_1967_12_2_a14,
     author = {Yu. M. Ryzhov},
     title = {Limit {Theorems} for {Functionals} of {Sample} {Functions} of {a~Stationary} {Gaussian} {Process}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {370--372},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {1967},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1967_12_2_a14/}
}
TY  - JOUR
AU  - Yu. M. Ryzhov
TI  - Limit Theorems for Functionals of Sample Functions of a~Stationary Gaussian Process
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1967
SP  - 370
EP  - 372
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1967_12_2_a14/
LA  - ru
ID  - TVP_1967_12_2_a14
ER  - 
%0 Journal Article
%A Yu. M. Ryzhov
%T Limit Theorems for Functionals of Sample Functions of a~Stationary Gaussian Process
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1967
%P 370-372
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1967_12_2_a14/
%G ru
%F TVP_1967_12_2_a14
Yu. M. Ryzhov. Limit Theorems for Functionals of Sample Functions of a~Stationary Gaussian Process. Teoriâ veroâtnostej i ee primeneniâ, Tome 12 (1967) no. 2, pp. 370-372. http://geodesic.mathdoc.fr/item/TVP_1967_12_2_a14/