On Martin Boundaries for Invariant Markov Processes on a Solvable Group
Teoriâ veroâtnostej i ee primeneniâ, Tome 12 (1967) no. 2, pp. 358-362
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider left-invatiant diffusion processes on the group $G=\Bigl\{\begin{Vmatrix}x&y\\0&1\end{Vmatrix},\ x>0\Bigr\}$ and find all minimal positive solutions of the equation $\widehat L_a=0$ where $L_a$ is some leftinvariant differential operator of the second order on $G$. These results are different from those in the cases of abelian and nilpotent groups where all minimal harmonic functions are non-negative characters.
@article{TVP_1967_12_2_a12,
author = {S. A. Molchanov},
title = {On {Martin} {Boundaries} for {Invariant} {Markov} {Processes} on {a~Solvable} {Group}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {358--362},
year = {1967},
volume = {12},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1967_12_2_a12/}
}
S. A. Molchanov. On Martin Boundaries for Invariant Markov Processes on a Solvable Group. Teoriâ veroâtnostej i ee primeneniâ, Tome 12 (1967) no. 2, pp. 358-362. http://geodesic.mathdoc.fr/item/TVP_1967_12_2_a12/