The Asymptotic Behaviour of the Probability that a~Critical Branching Process is Not Extinct
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 12 (1967) no. 1, pp. 179-183
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Critical age-dependent branching processes are considered. Let $\mu_t$ be the number of particles at a time $t$. For probability $\mathbf P\{\mu_t>0\}$ we derive the asymptotical formula (3) as $t\to\infty$ which is a generalization of (2).
			
            
            
            
          
        
      @article{TVP_1967_12_1_a20,
     author = {B. A. Sevast'yanov},
     title = {The {Asymptotic} {Behaviour} of the {Probability} that {a~Critical} {Branching} {Process} is {Not} {Extinct}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {179--183},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {1967},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1967_12_1_a20/}
}
                      
                      
                    TY - JOUR AU - B. A. Sevast'yanov TI - The Asymptotic Behaviour of the Probability that a~Critical Branching Process is Not Extinct JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1967 SP - 179 EP - 183 VL - 12 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1967_12_1_a20/ LA - ru ID - TVP_1967_12_1_a20 ER -
B. A. Sevast'yanov. The Asymptotic Behaviour of the Probability that a~Critical Branching Process is Not Extinct. Teoriâ veroâtnostej i ee primeneniâ, Tome 12 (1967) no. 1, pp. 179-183. http://geodesic.mathdoc.fr/item/TVP_1967_12_1_a20/
