The Asymptotic Behaviour of the Probability that a Critical Branching Process is Not Extinct
Teoriâ veroâtnostej i ee primeneniâ, Tome 12 (1967) no. 1, pp. 179-183
Cet article a éte moissonné depuis la source Math-Net.Ru
Critical age-dependent branching processes are considered. Let $\mu_t$ be the number of particles at a time $t$. For probability $\mathbf P\{\mu_t>0\}$ we derive the asymptotical formula (3) as $t\to\infty$ which is a generalization of (2).
@article{TVP_1967_12_1_a20,
author = {B. A. Sevast'yanov},
title = {The {Asymptotic} {Behaviour} of the {Probability} that {a~Critical} {Branching} {Process} is {Not} {Extinct}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {179--183},
year = {1967},
volume = {12},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1967_12_1_a20/}
}
TY - JOUR AU - B. A. Sevast'yanov TI - The Asymptotic Behaviour of the Probability that a Critical Branching Process is Not Extinct JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1967 SP - 179 EP - 183 VL - 12 IS - 1 UR - http://geodesic.mathdoc.fr/item/TVP_1967_12_1_a20/ LA - ru ID - TVP_1967_12_1_a20 ER -
B. A. Sevast'yanov. The Asymptotic Behaviour of the Probability that a Critical Branching Process is Not Extinct. Teoriâ veroâtnostej i ee primeneniâ, Tome 12 (1967) no. 1, pp. 179-183. http://geodesic.mathdoc.fr/item/TVP_1967_12_1_a20/