Necessary and Sufficient Conditions for Asymptotic Stability of Linear Stochastic Systems
Teoriâ veroâtnostej i ee primeneniâ, Tome 12 (1967) no. 1, pp. 167-172
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we consider the following two problems. (1) Let $x_0$ be an arbitrary element of $E_l$, $x_n=A_nx_{n-1}$ and $A_1,A_2\dots$ be a sequence of equidistributed independent random matrices. When $\mathbf P\{|x_n|\to0\}=1$? (2) What are the conditions for the solutions of equation (3) to tend to zero with probability 1 as $t\to\infty$? The answers to these questions are given in terms of the invariant measure of some auxiliary Markov process. In the case of problem (2) and $l=2$ the density of this measure is given by (10).
@article{TVP_1967_12_1_a18,
author = {R. Z. Khas'minskii},
title = {Necessary and {Sufficient} {Conditions} for {Asymptotic} {Stability} of {Linear} {Stochastic} {Systems}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {167--172},
year = {1967},
volume = {12},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1967_12_1_a18/}
}
TY - JOUR AU - R. Z. Khas'minskii TI - Necessary and Sufficient Conditions for Asymptotic Stability of Linear Stochastic Systems JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1967 SP - 167 EP - 172 VL - 12 IS - 1 UR - http://geodesic.mathdoc.fr/item/TVP_1967_12_1_a18/ LA - ru ID - TVP_1967_12_1_a18 ER -
R. Z. Khas'minskii. Necessary and Sufficient Conditions for Asymptotic Stability of Linear Stochastic Systems. Teoriâ veroâtnostej i ee primeneniâ, Tome 12 (1967) no. 1, pp. 167-172. http://geodesic.mathdoc.fr/item/TVP_1967_12_1_a18/