Remarks on Uncorrelated Gaussian Dependent Random Variables
Teoriâ veroâtnostej i ee primeneniâ, Tome 12 (1967) no. 1, pp. 141-143

Voir la notice de l'article provenant de la source Math-Net.Ru

Formula (3) of the present paper gives a general example of two uncorrelated Gaussian dependent random variables with non-Gaussian joint distribution. In this formula $\varphi(x)$ is a bounded even real valued function defined on the real line such that $\frac1{\sqrt{2\pi}}\int_{-\infty}^\infty\varphi(x)e^{-x^2/2}\,dx=0$, $h$ is equal to $\sup_{-\infty$ and $-1\le\lambda\le1$.
@article{TVP_1967_12_1_a14,
     author = {O. V. Sarmanov},
     title = {Remarks on {Uncorrelated} {Gaussian} {Dependent} {Random} {Variables}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {141--143},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {1967},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1967_12_1_a14/}
}
TY  - JOUR
AU  - O. V. Sarmanov
TI  - Remarks on Uncorrelated Gaussian Dependent Random Variables
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1967
SP  - 141
EP  - 143
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1967_12_1_a14/
LA  - ru
ID  - TVP_1967_12_1_a14
ER  - 
%0 Journal Article
%A O. V. Sarmanov
%T Remarks on Uncorrelated Gaussian Dependent Random Variables
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1967
%P 141-143
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1967_12_1_a14/
%G ru
%F TVP_1967_12_1_a14
O. V. Sarmanov. Remarks on Uncorrelated Gaussian Dependent Random Variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 12 (1967) no. 1, pp. 141-143. http://geodesic.mathdoc.fr/item/TVP_1967_12_1_a14/