On Asymptotic Properties of Some Statistical Estimates for Gaussian Stochastic Processes
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 12 (1967) no. 1, pp. 3-10
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The paper deals with stochastic process $\eta(t)$ $(0\le t\le T)$ having stationary Gaussian increments, zero mean and spectral density $f_\eta(\lambda)=f_\xi(\lambda)+cf_\zeta(\lambda)$ where $f_\xi(\lambda)$ and $f_\zeta(\lambda)$ are known non-negative functions and $c\ge0$ is an unknown parameter. It is shown, that the unbiased consistent; estimates of $с$ suggested in [1] are also asymptotically normal and asymptotically efficient when some unrestrictive conditions are imposed.
			
            
            
            
          
        
      @article{TVP_1967_12_1_a0,
     author = {V. G. Alekseev},
     title = {On {Asymptotic} {Properties} of {Some} {Statistical} {Estimates} for {Gaussian} {Stochastic} {Processes}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {3--10},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {1967},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1967_12_1_a0/}
}
                      
                      
                    TY - JOUR AU - V. G. Alekseev TI - On Asymptotic Properties of Some Statistical Estimates for Gaussian Stochastic Processes JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1967 SP - 3 EP - 10 VL - 12 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1967_12_1_a0/ LA - ru ID - TVP_1967_12_1_a0 ER -
V. G. Alekseev. On Asymptotic Properties of Some Statistical Estimates for Gaussian Stochastic Processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 12 (1967) no. 1, pp. 3-10. http://geodesic.mathdoc.fr/item/TVP_1967_12_1_a0/
