On regular boundary points for Markov processes
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 11 (1966) no. 4, pp. 690-695
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The equivalence of the notion of a regular boundary point with that of a quasi regular boundary point is proved in this paper for a wide class of Markov processes in a semicompact. The criterion for a point to be regular which is analogous to the criterion of Valle-Poussin (in the theory of differential equations) is used to prove that when certain conditions are satisfied a point is regular for one process if and only if it is regular for another one.
			
            
            
            
          
        
      @article{TVP_1966_11_4_a8,
     author = {N. V. Krylov},
     title = {On regular boundary points for {Markov} processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {690--695},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {1966},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1966_11_4_a8/}
}
                      
                      
                    N. V. Krylov. On regular boundary points for Markov processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 11 (1966) no. 4, pp. 690-695. http://geodesic.mathdoc.fr/item/TVP_1966_11_4_a8/
