On regular boundary points for Markov processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 11 (1966) no. 4, pp. 690-695
Cet article a éte moissonné depuis la source Math-Net.Ru
The equivalence of the notion of a regular boundary point with that of a quasi regular boundary point is proved in this paper for a wide class of Markov processes in a semicompact. The criterion for a point to be regular which is analogous to the criterion of Valle-Poussin (in the theory of differential equations) is used to prove that when certain conditions are satisfied a point is regular for one process if and only if it is regular for another one.
@article{TVP_1966_11_4_a8,
author = {N. V. Krylov},
title = {On regular boundary points for {Markov} processes},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {690--695},
year = {1966},
volume = {11},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1966_11_4_a8/}
}
N. V. Krylov. On regular boundary points for Markov processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 11 (1966) no. 4, pp. 690-695. http://geodesic.mathdoc.fr/item/TVP_1966_11_4_a8/