On the accuracy of Gaussian approximation to the distribution functions of sums of independent random variables
Teoriâ veroâtnostej i ee primeneniâ, Tome 11 (1966) no. 4, pp. 632-655
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\{\xi_n\}$ be a sequence of independent identically distributed random variables with a common distribution function (d.f.) $F(x)$. Let us assume that d.f. belongs to the domain of attraction of the Gaussian law. Denote by $F_n(x;A_n,B_n)$ the d.f. of normalized sum $S_n=\frac1{B_n}\sum_1^n\xi_i-A_n$ and let $$ \delta_n=\inf_{A_n,B_n}\sup_x|F_n(x;A_n,B_n)-\Phi(x)| $$ where $\Phi(x)=\frac1{\sqrt{2\pi}}\int_{-\infty}^xe^{-u^2/2}\,du$. We investigate in this paper the rate of convergence of $\delta_n$ to 0 and some other related problems. The main results which are also indicative of the other results of the paper are the following theorems. Theorem 3.1. {\it In order that $\delta_n=O(n^{-\delta/2})$, $0<\delta<1$, it is necessary and sufficient that the following conditions be satisfied} $$ \sigma^2=\int_{-\infty}^\infty x^2\,dF(x)<\infty,\eqno(3.2) \int_{|x|>z}x^2\,dF(x)=O(|z|^{-\delta}),\quad z\to\infty.\eqno(3.3) $$ Theorem 3.2. {\it In order that $\delta_n=O(n^{-1/2})$ it is necessary and sufficient that conditions (3.1), (3.2) and the following one $$ \int_{-z}^zx^3\,dF(x)=O(1),\quad z\to\infty\eqno(3.4) $$ be satisfied}.
@article{TVP_1966_11_4_a3,
author = {I. A. Ibragimov},
title = {On the accuracy of {Gaussian} approximation to the distribution functions of sums of independent random variables},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {632--655},
year = {1966},
volume = {11},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1966_11_4_a3/}
}
TY - JOUR AU - I. A. Ibragimov TI - On the accuracy of Gaussian approximation to the distribution functions of sums of independent random variables JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1966 SP - 632 EP - 655 VL - 11 IS - 4 UR - http://geodesic.mathdoc.fr/item/TVP_1966_11_4_a3/ LA - ru ID - TVP_1966_11_4_a3 ER -
%0 Journal Article %A I. A. Ibragimov %T On the accuracy of Gaussian approximation to the distribution functions of sums of independent random variables %J Teoriâ veroâtnostej i ee primeneniâ %D 1966 %P 632-655 %V 11 %N 4 %U http://geodesic.mathdoc.fr/item/TVP_1966_11_4_a3/ %G ru %F TVP_1966_11_4_a3
I. A. Ibragimov. On the accuracy of Gaussian approximation to the distribution functions of sums of independent random variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 11 (1966) no. 4, pp. 632-655. http://geodesic.mathdoc.fr/item/TVP_1966_11_4_a3/