On the accuracy of Gaussian approximation to the distribution functions of sums of independent random variables
Teoriâ veroâtnostej i ee primeneniâ, Tome 11 (1966) no. 4, pp. 632-655
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\{\xi_n\}$ be a sequence of independent identically distributed random variables with a common distribution function (d.f.) $F(x)$. Let us assume that d.f. belongs to the domain of attraction of the Gaussian law. Denote by $F_n(x;A_n,B_n)$ the d.f. of normalized sum $S_n=\frac1{B_n}\sum_1^n\xi_i-A_n$ and let
$$
\delta_n=\inf_{A_n,B_n}\sup_x|F_n(x;A_n,B_n)-\Phi(x)|
$$
where $\Phi(x)=\frac1{\sqrt{2\pi}}\int_{-\infty}^xe^{-u^2/2}\,du$.
We investigate in this paper the rate of convergence of $\delta_n$ to 0 and some other related problems. The main results which are also indicative of the other results of the paper are the following theorems.
Theorem 3.1. {\it In order that $\delta_n=O(n^{-\delta/2})$, $0\delta1$, it is necessary and sufficient that the following conditions be satisfied}
$$
\sigma^2=\int_{-\infty}^\infty x^2\,dF(x)\infty,\eqno(3.2)
\int_{|x|>z}x^2\,dF(x)=O(|z|^{-\delta}),\quad z\to\infty.\eqno(3.3)
$$ Theorem 3.2. {\it In order that $\delta_n=O(n^{-1/2})$ it is necessary and sufficient that conditions (3.1), (3.2) and the following one
$$
\int_{-z}^zx^3\,dF(x)=O(1),\quad z\to\infty\eqno(3.4)
$$
be satisfied}.
@article{TVP_1966_11_4_a3,
author = {I. A. Ibragimov},
title = {On the accuracy of {Gaussian} approximation to the distribution functions of sums of independent random variables},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {632--655},
publisher = {mathdoc},
volume = {11},
number = {4},
year = {1966},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1966_11_4_a3/}
}
TY - JOUR AU - I. A. Ibragimov TI - On the accuracy of Gaussian approximation to the distribution functions of sums of independent random variables JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1966 SP - 632 EP - 655 VL - 11 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1966_11_4_a3/ LA - ru ID - TVP_1966_11_4_a3 ER -
%0 Journal Article %A I. A. Ibragimov %T On the accuracy of Gaussian approximation to the distribution functions of sums of independent random variables %J Teoriâ veroâtnostej i ee primeneniâ %D 1966 %P 632-655 %V 11 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_1966_11_4_a3/ %G ru %F TVP_1966_11_4_a3
I. A. Ibragimov. On the accuracy of Gaussian approximation to the distribution functions of sums of independent random variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 11 (1966) no. 4, pp. 632-655. http://geodesic.mathdoc.fr/item/TVP_1966_11_4_a3/