Asymptotic behaviour of a~number of groups of particles in a~classical problem of permutation
Teoriâ veroâtnostej i ee primeneniâ, Tome 11 (1966) no. 4, pp. 701-708
Voir la notice de l'article provenant de la source Math-Net.Ru
Let groups each of $m$ particles be distributed independently into $n$ cells so that particles of every group are distributed into different cells with all ${n\choose m}$ possible permutations having equal probabilities. A random variable $\nu_m(n,t)$ is introduced which is equal to the number of groups whose distribution leads to at least $t$ cells being occupied for the first time.
In this paper the whole spectrum of limit theorems is obtained and exact formulae as well as their asymptotic expressions as $n$, $t\to\infty$ of the mean and variance of random variables $\nu_m(n,t)$ are found.
@article{TVP_1966_11_4_a10,
author = {G. I. Ivchenko and Yu. I. Medvedev},
title = {Asymptotic behaviour of a~number of groups of particles in a~classical problem of permutation},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {701--708},
publisher = {mathdoc},
volume = {11},
number = {4},
year = {1966},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1966_11_4_a10/}
}
TY - JOUR AU - G. I. Ivchenko AU - Yu. I. Medvedev TI - Asymptotic behaviour of a~number of groups of particles in a~classical problem of permutation JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1966 SP - 701 EP - 708 VL - 11 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1966_11_4_a10/ LA - ru ID - TVP_1966_11_4_a10 ER -
%0 Journal Article %A G. I. Ivchenko %A Yu. I. Medvedev %T Asymptotic behaviour of a~number of groups of particles in a~classical problem of permutation %J Teoriâ veroâtnostej i ee primeneniâ %D 1966 %P 701-708 %V 11 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_1966_11_4_a10/ %G ru %F TVP_1966_11_4_a10
G. I. Ivchenko; Yu. I. Medvedev. Asymptotic behaviour of a~number of groups of particles in a~classical problem of permutation. Teoriâ veroâtnostej i ee primeneniâ, Tome 11 (1966) no. 4, pp. 701-708. http://geodesic.mathdoc.fr/item/TVP_1966_11_4_a10/