Some inequalities for characteristic functions
Teoriâ veroâtnostej i ee primeneniâ, Tome 11 (1966) no. 3, pp. 500-506

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ be an oval on a plane and $P$ the uniform distribution over $A$ with characteristic function $f$. In the first part of this note an inequality for $|f|$ is given. In the second part some inequalities for joint characteristic function of $\xi$ and some functions of $\xi$ are established. The main tool used is the so-called Van der Corput lemma.
@article{TVP_1966_11_3_a9,
     author = {S. M. Sadikova},
     title = {Some inequalities for characteristic functions},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {500--506},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {1966},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1966_11_3_a9/}
}
TY  - JOUR
AU  - S. M. Sadikova
TI  - Some inequalities for characteristic functions
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1966
SP  - 500
EP  - 506
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1966_11_3_a9/
LA  - ru
ID  - TVP_1966_11_3_a9
ER  - 
%0 Journal Article
%A S. M. Sadikova
%T Some inequalities for characteristic functions
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1966
%P 500-506
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1966_11_3_a9/
%G ru
%F TVP_1966_11_3_a9
S. M. Sadikova. Some inequalities for characteristic functions. Teoriâ veroâtnostej i ee primeneniâ, Tome 11 (1966) no. 3, pp. 500-506. http://geodesic.mathdoc.fr/item/TVP_1966_11_3_a9/