The accuracy of approximation oi the limit distribution to the distribution of the maximum of sums of independent random variables
Teoriâ veroâtnostej i ee primeneniâ, Tome 11 (1966) no. 3, pp. 497-500 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\xi_1\xi_2,\dots$ be a sequence of identically distributed independent random variables n and $S_0=0$, $S_n=\sum_{k=1}^n\xi_k$, $n=1,2,\dots$, $\bar S_n=\max_{0\le k\le n}S_k$, $n=0,1\dots$. Let us suppose that $\mathbf M\xi_1=a>0$, $\beta_3=\mathbf M|\xi_1-a|^3<\infty$, and denote $\sigma^2=\mathbf M(\xi_1-a)^2$. It is established that $$ \mathbf P\{S_n\le x\}-\mathbf P\{\bar S_n\le x\}\le\frac C{\sqrt n}\max\biggl\{\frac{\beta_3^2}{\sigma^6},\frac{\beta_3^2}{a^6},\frac{(\mathbf M|\xi_1|)^2}{\sigma^2}\biggr\} $$ where $С$ is a constant.
@article{TVP_1966_11_3_a8,
     author = {B. A. Rogozin},
     title = {The accuracy of approximation oi the limit distribution to the distribution of the maximum of sums of independent random variables},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {497--500},
     year = {1966},
     volume = {11},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1966_11_3_a8/}
}
TY  - JOUR
AU  - B. A. Rogozin
TI  - The accuracy of approximation oi the limit distribution to the distribution of the maximum of sums of independent random variables
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1966
SP  - 497
EP  - 500
VL  - 11
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_1966_11_3_a8/
LA  - ru
ID  - TVP_1966_11_3_a8
ER  - 
%0 Journal Article
%A B. A. Rogozin
%T The accuracy of approximation oi the limit distribution to the distribution of the maximum of sums of independent random variables
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1966
%P 497-500
%V 11
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_1966_11_3_a8/
%G ru
%F TVP_1966_11_3_a8
B. A. Rogozin. The accuracy of approximation oi the limit distribution to the distribution of the maximum of sums of independent random variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 11 (1966) no. 3, pp. 497-500. http://geodesic.mathdoc.fr/item/TVP_1966_11_3_a8/