Предельная теорема для решений дифференциальных уравнений со случайной правой частью
Teoriâ veroâtnostej i ee primeneniâ, Tome 11 (1966) no. 3, pp. 444-462

Voir la notice de l'article provenant de la source Math-Net.Ru

The asymptotic behaviour of the solution $X_\varepsilon(t,\omega)$ of equation (0.1) as $\varepsilon\to0$ is considered. The main assumptions are the following ones: 1) condition (1.1) is fulfilled and the processes $F^{(i)}(x,t,\omega)$ satisfy Ibragirnov's mixing condition (1.5) with $T^6\beta(T)\downarrow0$ as $T\to\infty$, 2) limits (1.4) exist and $\overline\Phi^0(x)\equiv0$. The weak convergence of the process $X_\varepsilon(\tau,\omega)$ $(\tau=\varepsilon^2t)$ to a Markov process $X_0(\tau,\omega)$ is proved. Moreover the local characteristics of the process $X_0(\tau,\omega)$ are calculated. An application of this theorem to the problem of parametric excitation of linear systems by random forces is considered
@article{TVP_1966_11_3_a3,
     author = {R. Z. Khas'minskii},
     title = {{\CYRP}{\cyrr}{\cyre}{\cyrd}{\cyre}{\cyrl}{\cyrsftsn}{\cyrn}{\cyra}{\cyrya} {\cyrt}{\cyre}{\cyro}{\cyrr}{\cyre}{\cyrm}{\cyra} {\cyrd}{\cyrl}{\cyrya} {\cyrr}{\cyre}{\cyrsh}{\cyre}{\cyrn}{\cyri}{\cyrishrt} {\cyrd}{\cyri}{\cyrf}{\cyrf}{\cyre}{\cyrr}{\cyre}{\cyrn}{\cyrc}{\cyri}{\cyra}{\cyrl}{\cyrsftsn}{\cyrn}{\cyrery}{\cyrh} {\cyru}{\cyrr}{\cyra}{\cyrv}{\cyrn}{\cyre}{\cyrn}{\cyri}{\cyrishrt} {\cyrs}{\cyro} {\cyrs}{\cyrl}{\cyru}{\cyrch}{\cyra}{\cyrishrt}{\cyrn}{\cyro}{\cyrishrt} {\cyrp}{\cyrr}{\cyra}{\cyrv}{\cyro}{\cyrishrt} {\cyrch}{\cyra}{\cyrs}{\cyrt}{\cyrsftsn}{\cyryu}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {444--462},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {1966},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1966_11_3_a3/}
}
TY  - JOUR
AU  - R. Z. Khas'minskii
TI  - Предельная теорема для решений дифференциальных уравнений со случайной правой частью
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1966
SP  - 444
EP  - 462
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1966_11_3_a3/
LA  - ru
ID  - TVP_1966_11_3_a3
ER  - 
%0 Journal Article
%A R. Z. Khas'minskii
%T Предельная теорема для решений дифференциальных уравнений со случайной правой частью
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1966
%P 444-462
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1966_11_3_a3/
%G ru
%F TVP_1966_11_3_a3
R. Z. Khas'minskii. Предельная теорема для решений дифференциальных уравнений со случайной правой частью. Teoriâ veroâtnostej i ee primeneniâ, Tome 11 (1966) no. 3, pp. 444-462. http://geodesic.mathdoc.fr/item/TVP_1966_11_3_a3/