On quasi-diffusional processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 11 (1966) no. 3, pp. 424-443

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper a Markov process $X$ in an Euclidean space is constructed for each elliptic differential operator $L$ of the second order with a continuous principal part. We prove that $X$ is a quasi-diffusional process with the oorreisponding differential operator equal to $L$. The infinitesimal operator of the part of $X$ in a domain with a fimooth, boundary is completely discribed in terms of Sobolev's spaces.
@article{TVP_1966_11_3_a2,
     author = {N. V. Krylov},
     title = {On quasi-diffusional processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {424--443},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {1966},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1966_11_3_a2/}
}
TY  - JOUR
AU  - N. V. Krylov
TI  - On quasi-diffusional processes
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1966
SP  - 424
EP  - 443
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1966_11_3_a2/
LA  - ru
ID  - TVP_1966_11_3_a2
ER  - 
%0 Journal Article
%A N. V. Krylov
%T On quasi-diffusional processes
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1966
%P 424-443
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1966_11_3_a2/
%G ru
%F TVP_1966_11_3_a2
N. V. Krylov. On quasi-diffusional processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 11 (1966) no. 3, pp. 424-443. http://geodesic.mathdoc.fr/item/TVP_1966_11_3_a2/