A~method for obtaining estimates of the expectation of some function of $n$-dimensional random vector
Teoriâ veroâtnostej i ee primeneniâ, Tome 11 (1966) no. 3, pp. 537-541
Voir la notice de l'article provenant de la source Math-Net.Ru
A method for obtaining estimates of the expectation of some function of $n$-dimensional random vector is considered. With the help of graph theory these estimates are constructed on the basis of some known distribution functions of less then $n$ dimensions.
@article{TVP_1966_11_3_a16,
author = {V. I. Korzhik},
title = {A~method for obtaining estimates of the expectation of some function of $n$-dimensional random vector},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {537--541},
publisher = {mathdoc},
volume = {11},
number = {3},
year = {1966},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1966_11_3_a16/}
}
TY - JOUR AU - V. I. Korzhik TI - A~method for obtaining estimates of the expectation of some function of $n$-dimensional random vector JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1966 SP - 537 EP - 541 VL - 11 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1966_11_3_a16/ LA - ru ID - TVP_1966_11_3_a16 ER -
%0 Journal Article %A V. I. Korzhik %T A~method for obtaining estimates of the expectation of some function of $n$-dimensional random vector %J Teoriâ veroâtnostej i ee primeneniâ %D 1966 %P 537-541 %V 11 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_1966_11_3_a16/ %G ru %F TVP_1966_11_3_a16
V. I. Korzhik. A~method for obtaining estimates of the expectation of some function of $n$-dimensional random vector. Teoriâ veroâtnostej i ee primeneniâ, Tome 11 (1966) no. 3, pp. 537-541. http://geodesic.mathdoc.fr/item/TVP_1966_11_3_a16/