A~method for obtaining estimates of the expectation of some function of $n$-dimensional random vector
Teoriâ veroâtnostej i ee primeneniâ, Tome 11 (1966) no. 3, pp. 537-541

Voir la notice de l'article provenant de la source Math-Net.Ru

A method for obtaining estimates of the expectation of some function of $n$-dimensional random vector is considered. With the help of graph theory these estimates are constructed on the basis of some known distribution functions of less then $n$ dimensions.
@article{TVP_1966_11_3_a16,
     author = {V. I. Korzhik},
     title = {A~method for obtaining estimates of the expectation of some function of $n$-dimensional random vector},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {537--541},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {1966},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1966_11_3_a16/}
}
TY  - JOUR
AU  - V. I. Korzhik
TI  - A~method for obtaining estimates of the expectation of some function of $n$-dimensional random vector
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1966
SP  - 537
EP  - 541
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1966_11_3_a16/
LA  - ru
ID  - TVP_1966_11_3_a16
ER  - 
%0 Journal Article
%A V. I. Korzhik
%T A~method for obtaining estimates of the expectation of some function of $n$-dimensional random vector
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1966
%P 537-541
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1966_11_3_a16/
%G ru
%F TVP_1966_11_3_a16
V. I. Korzhik. A~method for obtaining estimates of the expectation of some function of $n$-dimensional random vector. Teoriâ veroâtnostej i ee primeneniâ, Tome 11 (1966) no. 3, pp. 537-541. http://geodesic.mathdoc.fr/item/TVP_1966_11_3_a16/