On non-degenerate probability distributions in the space $l_p(1\le p\infty)$
Teoriâ veroâtnostej i ee primeneniâ, Tome 11 (1966) no. 3, pp. 524-528

Voir la notice de l'article provenant de la source Math-Net.Ru

The definition of non-degeneracy of a probability distribution $\mu$, in the spacе $l_p(1\le p\infty)$ is given and some properties of a non-degenerate $\mu$ are proved in the following two cases: 1. $\mu$ has the covariance operator, 2. $\mu$ is a normal distribution.
@article{TVP_1966_11_3_a13,
     author = {N. N. Vakhania},
     title = {On non-degenerate probability distributions in the space $l_p(1\le p<\infty)$},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {524--528},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {1966},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1966_11_3_a13/}
}
TY  - JOUR
AU  - N. N. Vakhania
TI  - On non-degenerate probability distributions in the space $l_p(1\le p<\infty)$
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1966
SP  - 524
EP  - 528
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1966_11_3_a13/
LA  - ru
ID  - TVP_1966_11_3_a13
ER  - 
%0 Journal Article
%A N. N. Vakhania
%T On non-degenerate probability distributions in the space $l_p(1\le p<\infty)$
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1966
%P 524-528
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1966_11_3_a13/
%G ru
%F TVP_1966_11_3_a13
N. N. Vakhania. On non-degenerate probability distributions in the space $l_p(1\le p<\infty)$. Teoriâ veroâtnostej i ee primeneniâ, Tome 11 (1966) no. 3, pp. 524-528. http://geodesic.mathdoc.fr/item/TVP_1966_11_3_a13/