On non-degenerate probability distributions in the space $l_p(1\le p\infty)$
Teoriâ veroâtnostej i ee primeneniâ, Tome 11 (1966) no. 3, pp. 524-528
Cet article a éte moissonné depuis la source Math-Net.Ru
The definition of non-degeneracy of a probability distribution $\mu$, in the spacе $l_p(1\le p<\infty)$ is given and some properties of a non-degenerate $\mu$ are proved in the following two cases: 1. $\mu$ has the covariance operator, 2. $\mu$ is a normal distribution.
@article{TVP_1966_11_3_a13,
author = {N. N. Vakhania},
title = {On non-degenerate probability distributions in the space $l_p(1\le p<\infty)$},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {524--528},
year = {1966},
volume = {11},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1966_11_3_a13/}
}
N. N. Vakhania. On non-degenerate probability distributions in the space $l_p(1\le p<\infty)$. Teoriâ veroâtnostej i ee primeneniâ, Tome 11 (1966) no. 3, pp. 524-528. http://geodesic.mathdoc.fr/item/TVP_1966_11_3_a13/