On a relation between an estimate of the remainder in the central limit theorem and the law of iterated logarithm
Teoriâ veroâtnostej i ee primeneniâ, Tome 11 (1966) no. 3, pp. 514-518
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\{X_n\}$ $(n=1,2,\dots)$ be a sequence of independent random variables having zero means and finite variances. Let us denote \begin{gather*} S_n=\sum_{j=1}^nX_j,\quad B_n=\sum_{j=1}^n\mathbf E(X_j^2), \\ R_n=\sup_{-\infty<x<\infty}\biggl|\mathbf P(S_n<x\sqrt{B_n})-\frac1{\sqrt{2\pi}}\int_{-\infty}^xe^{-t^2/2}\,dt\biggr|. \end{gather*} The following theorem is proved. Theorem 1. {\it Suppose that \begin{gather*} B_n\to\infty,\quad\frac{B_{n+1}}{B_n}\to1, \\ R_n=O\biggl(\frac1{(\ln B_n)^{1+\delta}}\biggr)\quad\text{for some }\delta>0. \end{gather*} Then $$ \mathbf P\biggl(\limsup\frac{S_n}{(2B_n\ln\ln B_n)^{1/2}}=1\biggr)=1. $$}
@article{TVP_1966_11_3_a11,
author = {V. V. Petrov},
title = {On a~relation between an estimate of the remainder in the central limit theorem and the law of iterated logarithm},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {514--518},
year = {1966},
volume = {11},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1966_11_3_a11/}
}
TY - JOUR AU - V. V. Petrov TI - On a relation between an estimate of the remainder in the central limit theorem and the law of iterated logarithm JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1966 SP - 514 EP - 518 VL - 11 IS - 3 UR - http://geodesic.mathdoc.fr/item/TVP_1966_11_3_a11/ LA - ru ID - TVP_1966_11_3_a11 ER -
%0 Journal Article %A V. V. Petrov %T On a relation between an estimate of the remainder in the central limit theorem and the law of iterated logarithm %J Teoriâ veroâtnostej i ee primeneniâ %D 1966 %P 514-518 %V 11 %N 3 %U http://geodesic.mathdoc.fr/item/TVP_1966_11_3_a11/ %G ru %F TVP_1966_11_3_a11
V. V. Petrov. On a relation between an estimate of the remainder in the central limit theorem and the law of iterated logarithm. Teoriâ veroâtnostej i ee primeneniâ, Tome 11 (1966) no. 3, pp. 514-518. http://geodesic.mathdoc.fr/item/TVP_1966_11_3_a11/