On a~relation between an estimate of the remainder in the central limit theorem and the law of iterated logarithm
Teoriâ veroâtnostej i ee primeneniâ, Tome 11 (1966) no. 3, pp. 514-518

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\{X_n\}$ $(n=1,2,\dots)$ be a sequence of independent random variables having zero means and finite variances. Let us denote \begin{gather*} S_n=\sum_{j=1}^nX_j,\quad B_n=\sum_{j=1}^n\mathbf E(X_j^2), \\ R_n=\sup_{-\infty\infty}\biggl|\mathbf P(S_n\sqrt{B_n})-\frac1{\sqrt{2\pi}}\int_{-\infty}^xe^{-t^2/2}\,dt\biggr|. \end{gather*} The following theorem is proved. Theorem 1. {\it Suppose that \begin{gather*} B_n\to\infty,\quad\frac{B_{n+1}}{B_n}\to1, \\ R_n=O\biggl(\frac1{(\ln B_n)^{1+\delta}}\biggr)\quad\text{for some }\delta>0. \end{gather*} Then $$ \mathbf P\biggl(\limsup\frac{S_n}{(2B_n\ln\ln B_n)^{1/2}}=1\biggr)=1. $$}
@article{TVP_1966_11_3_a11,
     author = {V. V. Petrov},
     title = {On a~relation between an estimate of the remainder in the central limit theorem and the law of iterated logarithm},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {514--518},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {1966},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1966_11_3_a11/}
}
TY  - JOUR
AU  - V. V. Petrov
TI  - On a~relation between an estimate of the remainder in the central limit theorem and the law of iterated logarithm
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1966
SP  - 514
EP  - 518
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1966_11_3_a11/
LA  - ru
ID  - TVP_1966_11_3_a11
ER  - 
%0 Journal Article
%A V. V. Petrov
%T On a~relation between an estimate of the remainder in the central limit theorem and the law of iterated logarithm
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1966
%P 514-518
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1966_11_3_a11/
%G ru
%F TVP_1966_11_3_a11
V. V. Petrov. On a~relation between an estimate of the remainder in the central limit theorem and the law of iterated logarithm. Teoriâ veroâtnostej i ee primeneniâ, Tome 11 (1966) no. 3, pp. 514-518. http://geodesic.mathdoc.fr/item/TVP_1966_11_3_a11/