A multidimensional analogue of Berry–Esseen's inequality for sets of a bounded diameter
Teoriâ veroâtnostej i ee primeneniâ, Tome 11 (1966) no. 3, pp. 507-514
Cet article a éte moissonné depuis la source Math-Net.Ru
In the space $R^n$ functions of hounded variation $L(x)$ and $H(x)$ are considered. Let $P_L$ and $P_H$ be the quasi-measures defined on Borel subsets of $R^n$ by the formulae $$ P_L(B)=\int_B\,dL(x),\quad P_H(B)=\int_B\,dH(x). $$ Let us denote by $\mathfrak A_s$ the class of subsets of $R^n$ with the $(n-l)$-dimensional volumes of their boundaries not greater then $s$ and denote by $\mathfrak B_d$ the class of convex subsets of $R^n$ such that the $(n-l)$-dimensional volumes of their intersections with any hyperplane is not greater then $d$. We construct an upper estimate (analogous to that of Berry–Esseen) of the quantity $$ \Delta=\sup_{A\in\mathfrak G}|P_L(A)-P_H(A)| $$ where $\mathfrak G$ is $\mathfrak A_s$ or $\mathfrak B_d$.
@article{TVP_1966_11_3_a10,
author = {V. M. Zolotarev},
title = {A~multidimensional analogue of {Berry{\textendash}Esseen's} inequality for sets of a~bounded diameter},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {507--514},
year = {1966},
volume = {11},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1966_11_3_a10/}
}
V. M. Zolotarev. A multidimensional analogue of Berry–Esseen's inequality for sets of a bounded diameter. Teoriâ veroâtnostej i ee primeneniâ, Tome 11 (1966) no. 3, pp. 507-514. http://geodesic.mathdoc.fr/item/TVP_1966_11_3_a10/