On local structure of continuous Markov processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 11 (1966) no. 3, pp. 381-423

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $x_t$ be a continuous Markov process on a locally compact space $X$. In the article the following result is proved. There exists an additive positive functional $\varphi_t$ such that the process $y_t=x_{\tau_t}$ where $\tau_t$ is determined by the equality $\varphi_{\tau_t}=\tau$ posesses such a property: if $F(\xi_1,\dots,\xi_k)$ is a continuous bounded function which has derivatives of the first and the second orders and $\varphi_1,\dots,\varphi_k$ belong to the domain of the infinitesimal generator of the process $y_t$ then \begin{gather*} \mathbf M_yF(\varphi_1(y_t),\dots,\varphi_k(y_t))-F(\varphi_1(y),\dots,\varphi_k(y))=\int_0^t\mathbf M\psi(y_s)\,ds, \\ \psi(y)=\sum a_i(y)\frac{\partial F}{\partial\xi_i}(\varphi_1(y),\dots,\varphi_k(y))+\frac12\sum b_{ij}(y)\frac{\partial^2F}{\partial\xi_i\partial\xi_j}(\varphi_1(y),\dots,\varphi_k(y)), \end{gather*} where the coefficients $a_i(y)$, $b_{ij}(y)$ depend on the functions $\varphi_1,\dots,\varphi_k$.
@article{TVP_1966_11_3_a1,
     author = {A. V. Skorokhod},
     title = {On local structure of continuous {Markov} processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {381--423},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {1966},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1966_11_3_a1/}
}
TY  - JOUR
AU  - A. V. Skorokhod
TI  - On local structure of continuous Markov processes
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1966
SP  - 381
EP  - 423
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1966_11_3_a1/
LA  - ru
ID  - TVP_1966_11_3_a1
ER  - 
%0 Journal Article
%A A. V. Skorokhod
%T On local structure of continuous Markov processes
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1966
%P 381-423
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1966_11_3_a1/
%G ru
%F TVP_1966_11_3_a1
A. V. Skorokhod. On local structure of continuous Markov processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 11 (1966) no. 3, pp. 381-423. http://geodesic.mathdoc.fr/item/TVP_1966_11_3_a1/