Minimum sufficient statistics for a~sequence of independent random variables
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 11 (1966) no. 2, pp. 320-330
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A connection between minimum sufficient statistics and the density function of a sequence of independent random variables is found. The main result is contained in theorem 3 where the importance of exponential families of distributions (1) for decreasing the dimension of a minimum sufficient statistic is established.
			
            
            
            
          
        
      @article{TVP_1966_11_2_a6,
     author = {O. G. Zhuravlev},
     title = {Minimum sufficient statistics for a~sequence of independent random variables},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {320--330},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {1966},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1966_11_2_a6/}
}
                      
                      
                    O. G. Zhuravlev. Minimum sufficient statistics for a~sequence of independent random variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 11 (1966) no. 2, pp. 320-330. http://geodesic.mathdoc.fr/item/TVP_1966_11_2_a6/
