Minimum sufficient statistics for a~sequence of independent random variables
Teoriâ veroâtnostej i ee primeneniâ, Tome 11 (1966) no. 2, pp. 320-330

Voir la notice de l'article provenant de la source Math-Net.Ru

A connection between minimum sufficient statistics and the density function of a sequence of independent random variables is found. The main result is contained in theorem 3 where the importance of exponential families of distributions (1) for decreasing the dimension of a minimum sufficient statistic is established.
@article{TVP_1966_11_2_a6,
     author = {O. G. Zhuravlev},
     title = {Minimum sufficient statistics for a~sequence of independent random variables},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {320--330},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {1966},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1966_11_2_a6/}
}
TY  - JOUR
AU  - O. G. Zhuravlev
TI  - Minimum sufficient statistics for a~sequence of independent random variables
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1966
SP  - 320
EP  - 330
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1966_11_2_a6/
LA  - ru
ID  - TVP_1966_11_2_a6
ER  - 
%0 Journal Article
%A O. G. Zhuravlev
%T Minimum sufficient statistics for a~sequence of independent random variables
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1966
%P 320-330
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1966_11_2_a6/
%G ru
%F TVP_1966_11_2_a6
O. G. Zhuravlev. Minimum sufficient statistics for a~sequence of independent random variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 11 (1966) no. 2, pp. 320-330. http://geodesic.mathdoc.fr/item/TVP_1966_11_2_a6/