A~combinatorial identity and its application to the problem about the first occurence of a~rare event
Teoriâ veroâtnostej i ee primeneniâ, Tome 11 (1966) no. 2, pp. 313-320

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper a stationary chain of $m$-dependent events is investigated. The moment of the first occurence of the event is considered. A representation of the generating function of the moment is derived and the asymptotic behaviour of this moment is investigated when the probability of occurence of the event tends to zero.
@article{TVP_1966_11_2_a5,
     author = {A. D. Solov'ev},
     title = {A~combinatorial identity and its application to the problem about the first occurence of a~rare event},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {313--320},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {1966},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1966_11_2_a5/}
}
TY  - JOUR
AU  - A. D. Solov'ev
TI  - A~combinatorial identity and its application to the problem about the first occurence of a~rare event
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1966
SP  - 313
EP  - 320
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1966_11_2_a5/
LA  - ru
ID  - TVP_1966_11_2_a5
ER  - 
%0 Journal Article
%A A. D. Solov'ev
%T A~combinatorial identity and its application to the problem about the first occurence of a~rare event
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1966
%P 313-320
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1966_11_2_a5/
%G ru
%F TVP_1966_11_2_a5
A. D. Solov'ev. A~combinatorial identity and its application to the problem about the first occurence of a~rare event. Teoriâ veroâtnostej i ee primeneniâ, Tome 11 (1966) no. 2, pp. 313-320. http://geodesic.mathdoc.fr/item/TVP_1966_11_2_a5/