A combinatorial identity and its application to the problem about the first occurence of a rare event
Teoriâ veroâtnostej i ee primeneniâ, Tome 11 (1966) no. 2, pp. 313-320
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper a stationary chain of $m$-dependent events is investigated. The moment of the first occurence of the event is considered. A representation of the generating function of the moment is derived and the asymptotic behaviour of this moment is investigated when the probability of occurence of the event tends to zero.
@article{TVP_1966_11_2_a5,
author = {A. D. Solov'ev},
title = {A~combinatorial identity and its application to the problem about the first occurence of a~rare event},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {313--320},
year = {1966},
volume = {11},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1966_11_2_a5/}
}
TY - JOUR AU - A. D. Solov'ev TI - A combinatorial identity and its application to the problem about the first occurence of a rare event JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1966 SP - 313 EP - 320 VL - 11 IS - 2 UR - http://geodesic.mathdoc.fr/item/TVP_1966_11_2_a5/ LA - ru ID - TVP_1966_11_2_a5 ER -
A. D. Solov'ev. A combinatorial identity and its application to the problem about the first occurence of a rare event. Teoriâ veroâtnostej i ee primeneniâ, Tome 11 (1966) no. 2, pp. 313-320. http://geodesic.mathdoc.fr/item/TVP_1966_11_2_a5/