On the number of intersections of a~level by a~Gaussian stochastic process.~I
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 11 (1966) no. 1, pp. 120-128
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this first part we are concerned with the questions connected with moments of high order of the number of intersections for a Gaussian process $\xi_t$ (which is in general nonstationary). It is proved that for factorial moments an explicit and comparatively simple formula (11) can be obtained. If $\xi_t$ has the derivative $\xi_t^{(k)}$ then the moment of order $k$ of the number of intersections is finite. In the second part we shall consider some limit theorems for max $\xi_t$ and for the number of intersections of high level.
			
            
            
            
          
        
      @article{TVP_1966_11_1_a5,
     author = {Yu. K. Belyaev},
     title = {On the number of intersections of a~level by {a~Gaussian} stochastic {process.~I}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {120--128},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {1966},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1966_11_1_a5/}
}
                      
                      
                    Yu. K. Belyaev. On the number of intersections of a~level by a~Gaussian stochastic process.~I. Teoriâ veroâtnostej i ee primeneniâ, Tome 11 (1966) no. 1, pp. 120-128. http://geodesic.mathdoc.fr/item/TVP_1966_11_1_a5/
