An absolute estimate of the remainder in the central limit theorem
Teoriâ veroâtnostej i ee primeneniâ, Tome 11 (1966) no. 1, pp. 108-119

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\xi_1,\dots\xi_n$ be independent random varibles with zero means, variances $\sigma_1,\dots\sigma_n$ and third absolute moments $\beta_1\dots\beta_n$. Let us denote $$ \sigma^2=\sum_j\sigma_j^2,\quad\varepsilon=\biggl(\sum_j\beta_j\biggr)\biggr/\sigma^3, $$ and let $F(x)$ be the distribution function of the sum $\xi_1+\dots+\xi_n$ and $\Phi(x)$ be the distribution function of the normal $(0,1)$ law. Let further $\varepsilon$ be equal to a fixed positive number and $D(\varepsilon)$ denote the least value for which $$ \sup_x|F(x\sigma)-\Phi(x)|\le D(\varepsilon)\varepsilon. $$ Estimates of $D(\varepsilon)$ for all $\varepsilon$, $0\le\varepsilon\le0.79$ are obtained and the inequality $$ \sup_\varepsilon D(\varepsilon)1.322 $$ is proved.
@article{TVP_1966_11_1_a4,
     author = {V. M. Zolotarev},
     title = {An absolute estimate of the remainder in the central limit theorem},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {108--119},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {1966},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1966_11_1_a4/}
}
TY  - JOUR
AU  - V. M. Zolotarev
TI  - An absolute estimate of the remainder in the central limit theorem
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1966
SP  - 108
EP  - 119
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1966_11_1_a4/
LA  - ru
ID  - TVP_1966_11_1_a4
ER  - 
%0 Journal Article
%A V. M. Zolotarev
%T An absolute estimate of the remainder in the central limit theorem
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1966
%P 108-119
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1966_11_1_a4/
%G ru
%F TVP_1966_11_1_a4
V. M. Zolotarev. An absolute estimate of the remainder in the central limit theorem. Teoriâ veroâtnostej i ee primeneniâ, Tome 11 (1966) no. 1, pp. 108-119. http://geodesic.mathdoc.fr/item/TVP_1966_11_1_a4/