An absolute estimate of the remainder in the central limit theorem
Teoriâ veroâtnostej i ee primeneniâ, Tome 11 (1966) no. 1, pp. 108-119
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\xi_1,\dots\xi_n$ be independent random varibles with zero means, variances $\sigma_1,\dots\sigma_n$ and third absolute moments $\beta_1\dots\beta_n$. Let us denote
$$
\sigma^2=\sum_j\sigma_j^2,\quad\varepsilon=\biggl(\sum_j\beta_j\biggr)\biggr/\sigma^3,
$$
and let $F(x)$ be the distribution function of the sum $\xi_1+\dots+\xi_n$ and $\Phi(x)$ be the distribution function of the normal $(0,1)$ law. Let further $\varepsilon$ be equal to a fixed positive number and $D(\varepsilon)$ denote the least value for which
$$
\sup_x|F(x\sigma)-\Phi(x)|\le D(\varepsilon)\varepsilon.
$$
Estimates of $D(\varepsilon)$ for all $\varepsilon$, $0\le\varepsilon\le0.79$ are obtained and the inequality
$$
\sup_\varepsilon D(\varepsilon)1.322
$$
is proved.
@article{TVP_1966_11_1_a4,
author = {V. M. Zolotarev},
title = {An absolute estimate of the remainder in the central limit theorem},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {108--119},
publisher = {mathdoc},
volume = {11},
number = {1},
year = {1966},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1966_11_1_a4/}
}
V. M. Zolotarev. An absolute estimate of the remainder in the central limit theorem. Teoriâ veroâtnostej i ee primeneniâ, Tome 11 (1966) no. 1, pp. 108-119. http://geodesic.mathdoc.fr/item/TVP_1966_11_1_a4/