On the densities of Gaussian measures and Wiener--Hopf's integral equations
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 11 (1966) no. 1, pp. 170-179
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper we solve the problem about equivalence of Gaussian stationary measures $P(d\omega)$ and $P_1(d\omega)$ with correlation functions $B(t)$ and $B_1(t)$ respectively (theorem 1). We also consider the integral equations (1) and (6) and give conditions for the existence of solution of these equations (theorem 2).
			
            
            
            
          
        
      @article{TVP_1966_11_1_a11,
     author = {Yu. A. Rozanov},
     title = {On the densities of {Gaussian} measures and {Wiener--Hopf's} integral equations},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {170--179},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {1966},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1966_11_1_a11/}
}
                      
                      
                    Yu. A. Rozanov. On the densities of Gaussian measures and Wiener--Hopf's integral equations. Teoriâ veroâtnostej i ee primeneniâ, Tome 11 (1966) no. 1, pp. 170-179. http://geodesic.mathdoc.fr/item/TVP_1966_11_1_a11/
