Limit theorems for random walks.~I
Teoriâ veroâtnostej i ee primeneniâ, Tome 10 (1965) no. 4, pp. 660-671

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\xi_1,\xi_2,\dots,\xi_n,\dots$ be a sequence of independent random variables with the same distribution, $S_n=\sum_{k=1}^n\xi_k$ and let $f(x)$ be a measurable function. Limit theorems for sums $\sum_{k=1}^nf(S_k)$ are obtained
@article{TVP_1965_10_4_a3,
     author = {A. V. Skorokhod and N. P. Slobodenyuk},
     title = {Limit theorems for random {walks.~I}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {660--671},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {1965},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1965_10_4_a3/}
}
TY  - JOUR
AU  - A. V. Skorokhod
AU  - N. P. Slobodenyuk
TI  - Limit theorems for random walks.~I
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1965
SP  - 660
EP  - 671
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1965_10_4_a3/
LA  - ru
ID  - TVP_1965_10_4_a3
ER  - 
%0 Journal Article
%A A. V. Skorokhod
%A N. P. Slobodenyuk
%T Limit theorems for random walks.~I
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1965
%P 660-671
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1965_10_4_a3/
%G ru
%F TVP_1965_10_4_a3
A. V. Skorokhod; N. P. Slobodenyuk. Limit theorems for random walks.~I. Teoriâ veroâtnostej i ee primeneniâ, Tome 10 (1965) no. 4, pp. 660-671. http://geodesic.mathdoc.fr/item/TVP_1965_10_4_a3/