A~lemma on random determinants and its applications to characterizing multivariate distributions
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 10 (1965) no. 4, pp. 755-758
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Sufficient conditions for the distribution of the random variables $v_j^{(i)}$ to be determined uniquely given the distribution of the determinant
$$
\det\|v_j^{(i)}\|
$$
are found. The result is applied to the testing of hypotheses about the type of the distribution on the basis of a sample from a multivariate distribution.
			
            
            
            
          
        
      @article{TVP_1965_10_4_a16,
     author = {Ts. G. Khakhubiya},
     title = {A~lemma on random determinants and its applications to characterizing multivariate distributions},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {755--758},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {1965},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1965_10_4_a16/}
}
                      
                      
                    TY - JOUR AU - Ts. G. Khakhubiya TI - A~lemma on random determinants and its applications to characterizing multivariate distributions JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1965 SP - 755 EP - 758 VL - 10 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1965_10_4_a16/ LA - ru ID - TVP_1965_10_4_a16 ER -
%0 Journal Article %A Ts. G. Khakhubiya %T A~lemma on random determinants and its applications to characterizing multivariate distributions %J Teoriâ veroâtnostej i ee primeneniâ %D 1965 %P 755-758 %V 10 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_1965_10_4_a16/ %G ru %F TVP_1965_10_4_a16
Ts. G. Khakhubiya. A~lemma on random determinants and its applications to characterizing multivariate distributions. Teoriâ veroâtnostej i ee primeneniâ, Tome 10 (1965) no. 4, pp. 755-758. http://geodesic.mathdoc.fr/item/TVP_1965_10_4_a16/
