On the limit behaviour of the maximal probability in infinite dimensional case
Teoriâ veroâtnostej i ee primeneniâ, Tome 10 (1965) no. 4, pp. 753-754
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that in infinite dimensional case the maximal probabilities of distributions which are convolutions of a lattice distribution descend to 0 quicker than any negative power of $n$. Moreover the limits for the speed of their convergence are indicated.
@article{TVP_1965_10_4_a15,
author = {V. V. Sazonov},
title = {On the limit behaviour of the maximal probability in infinite dimensional case},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {753--754},
publisher = {mathdoc},
volume = {10},
number = {4},
year = {1965},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1965_10_4_a15/}
}
TY - JOUR AU - V. V. Sazonov TI - On the limit behaviour of the maximal probability in infinite dimensional case JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1965 SP - 753 EP - 754 VL - 10 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1965_10_4_a15/ LA - ru ID - TVP_1965_10_4_a15 ER -
V. V. Sazonov. On the limit behaviour of the maximal probability in infinite dimensional case. Teoriâ veroâtnostej i ee primeneniâ, Tome 10 (1965) no. 4, pp. 753-754. http://geodesic.mathdoc.fr/item/TVP_1965_10_4_a15/