On the evolution of distributed systems when there is a fluctuation of the density on the boundary
Teoriâ veroâtnostej i ee primeneniâ, Tome 10 (1965) no. 4, pp. 736-741
Cet article a éte moissonné depuis la source Math-Net.Ru
A dynamical system is considered which is described by a parabolic equation in a circle of length $2\pi$ when acted upon by an undistributed stochastic source with a power $\dot\pi(t)$ (the derivative of Poisson's process): $$ \frac{\partial W(x,t)}{\partial t}-D^2\frac{\partial^2W(x,t)}{\partial x^2}=\delta(x)\dot\pi(t). $$ The characteristic functional for this system which defines a countable additive measure iii the phase space is constructed. It is proved that almost all $W(x)$ are infinitely differentiable. This measure is not quasi-invariant.
@article{TVP_1965_10_4_a10,
author = {A. A. Beilinson},
title = {On the evolution of distributed systems when there is a~fluctuation of the density on the boundary},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {736--741},
year = {1965},
volume = {10},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1965_10_4_a10/}
}
TY - JOUR AU - A. A. Beilinson TI - On the evolution of distributed systems when there is a fluctuation of the density on the boundary JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1965 SP - 736 EP - 741 VL - 10 IS - 4 UR - http://geodesic.mathdoc.fr/item/TVP_1965_10_4_a10/ LA - ru ID - TVP_1965_10_4_a10 ER -
A. A. Beilinson. On the evolution of distributed systems when there is a fluctuation of the density on the boundary. Teoriâ veroâtnostej i ee primeneniâ, Tome 10 (1965) no. 4, pp. 736-741. http://geodesic.mathdoc.fr/item/TVP_1965_10_4_a10/