On the evolution of distributed systems when there is a~fluctuation of the density on the boundary
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 10 (1965) no. 4, pp. 736-741
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A dynamical system is considered which is described by a parabolic equation in a circle of length $2\pi$ when acted upon by an undistributed stochastic source with a power $\dot\pi(t)$ (the derivative of Poisson's process):
$$
\frac{\partial W(x,t)}{\partial t}-D^2\frac{\partial^2W(x,t)}{\partial x^2}=\delta(x)\dot\pi(t).
$$
The characteristic functional for this system which defines a countable additive measure iii the phase space is constructed. It is proved that almost all $W(x)$ are infinitely differentiable. This measure is not quasi-invariant.
			
            
            
            
          
        
      @article{TVP_1965_10_4_a10,
     author = {A. A. Beilinson},
     title = {On the evolution of distributed systems when there is a~fluctuation of the density on the boundary},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {736--741},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {1965},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1965_10_4_a10/}
}
                      
                      
                    TY - JOUR AU - A. A. Beilinson TI - On the evolution of distributed systems when there is a~fluctuation of the density on the boundary JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1965 SP - 736 EP - 741 VL - 10 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1965_10_4_a10/ LA - ru ID - TVP_1965_10_4_a10 ER -
%0 Journal Article %A A. A. Beilinson %T On the evolution of distributed systems when there is a~fluctuation of the density on the boundary %J Teoriâ veroâtnostej i ee primeneniâ %D 1965 %P 736-741 %V 10 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_1965_10_4_a10/ %G ru %F TVP_1965_10_4_a10
A. A. Beilinson. On the evolution of distributed systems when there is a~fluctuation of the density on the boundary. Teoriâ veroâtnostej i ee primeneniâ, Tome 10 (1965) no. 4, pp. 736-741. http://geodesic.mathdoc.fr/item/TVP_1965_10_4_a10/
