Some criterions of ``truncatedness'' of the optimal stopping moment in sequential analysis
Teoriâ veroâtnostej i ee primeneniâ, Tome 10 (1965) no. 4, pp. 601-613

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the following question: when in the problems of sequential analysis there exists such a finite $N$ that $\nu\le N$ with probability 1 where $\nu$ is the optimal stopping moment. Our criterions of truncatedness (theorem 1) generalize the results of S. N. Ray [1].
@article{TVP_1965_10_4_a0,
     author = {B. I. Grigelionis and A. N. Shiryaev},
     title = {Some criterions of ``truncatedness'' of the optimal stopping moment in sequential analysis},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {601--613},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {1965},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1965_10_4_a0/}
}
TY  - JOUR
AU  - B. I. Grigelionis
AU  - A. N. Shiryaev
TI  - Some criterions of ``truncatedness'' of the optimal stopping moment in sequential analysis
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1965
SP  - 601
EP  - 613
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1965_10_4_a0/
LA  - ru
ID  - TVP_1965_10_4_a0
ER  - 
%0 Journal Article
%A B. I. Grigelionis
%A A. N. Shiryaev
%T Some criterions of ``truncatedness'' of the optimal stopping moment in sequential analysis
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1965
%P 601-613
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1965_10_4_a0/
%G ru
%F TVP_1965_10_4_a0
B. I. Grigelionis; A. N. Shiryaev. Some criterions of ``truncatedness'' of the optimal stopping moment in sequential analysis. Teoriâ veroâtnostej i ee primeneniâ, Tome 10 (1965) no. 4, pp. 601-613. http://geodesic.mathdoc.fr/item/TVP_1965_10_4_a0/