Some criterions of ``truncatedness'' of the optimal stopping moment in sequential analysis
Teoriâ veroâtnostej i ee primeneniâ, Tome 10 (1965) no. 4, pp. 601-613
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the following question: when in the problems of sequential analysis there exists such a finite $N$ that $\nu\le N$ with probability 1 where $\nu$ is the optimal stopping moment. Our criterions of truncatedness (theorem 1) generalize the results of S. N. Ray [1].
@article{TVP_1965_10_4_a0,
author = {B. I. Grigelionis and A. N. Shiryaev},
title = {Some criterions of ``truncatedness'' of the optimal stopping moment in sequential analysis},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {601--613},
publisher = {mathdoc},
volume = {10},
number = {4},
year = {1965},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1965_10_4_a0/}
}
TY - JOUR AU - B. I. Grigelionis AU - A. N. Shiryaev TI - Some criterions of ``truncatedness'' of the optimal stopping moment in sequential analysis JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1965 SP - 601 EP - 613 VL - 10 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1965_10_4_a0/ LA - ru ID - TVP_1965_10_4_a0 ER -
%0 Journal Article %A B. I. Grigelionis %A A. N. Shiryaev %T Some criterions of ``truncatedness'' of the optimal stopping moment in sequential analysis %J Teoriâ veroâtnostej i ee primeneniâ %D 1965 %P 601-613 %V 10 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_1965_10_4_a0/ %G ru %F TVP_1965_10_4_a0
B. I. Grigelionis; A. N. Shiryaev. Some criterions of ``truncatedness'' of the optimal stopping moment in sequential analysis. Teoriâ veroâtnostej i ee primeneniâ, Tome 10 (1965) no. 4, pp. 601-613. http://geodesic.mathdoc.fr/item/TVP_1965_10_4_a0/