On a~characterization of the Poisson distribution and its statistical applications
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 10 (1965) no. 3, pp. 488-499
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The distributions of $n$ mutually independent random variables $X_1,\dots,X_n$ are Poisson ones if and only if the conditional joint distribution of $X_1,\dots,X_n$ given $\Sigma X_i=K$ is the multinomial distribution (4). If we wish to test the hypothesis that $X_1,\dots,X_n$ are Poisson random variables we can use the conditional test (8). This test considered as an unconditional one is asymptotically the most powerful test against close binomial or negative binomial alternatives. The characterization of the Poisson distribution and its extensions for the binomial and the negative binomial distributions can be used to generate Poisson, binomial or negative binomial random numbers.
			
            
            
            
          
        
      @article{TVP_1965_10_3_a6,
     author = {L. N. Bol'shev},
     title = {On a~characterization of the {Poisson} distribution and its statistical applications},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {488--499},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {1965},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1965_10_3_a6/}
}
                      
                      
                    TY - JOUR AU - L. N. Bol'shev TI - On a~characterization of the Poisson distribution and its statistical applications JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1965 SP - 488 EP - 499 VL - 10 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1965_10_3_a6/ LA - ru ID - TVP_1965_10_3_a6 ER -
L. N. Bol'shev. On a~characterization of the Poisson distribution and its statistical applications. Teoriâ veroâtnostej i ee primeneniâ, Tome 10 (1965) no. 3, pp. 488-499. http://geodesic.mathdoc.fr/item/TVP_1965_10_3_a6/
