On a~characterization of the Poisson distribution and its statistical applications
Teoriâ veroâtnostej i ee primeneniâ, Tome 10 (1965) no. 3, pp. 488-499

Voir la notice de l'article provenant de la source Math-Net.Ru

The distributions of $n$ mutually independent random variables $X_1,\dots,X_n$ are Poisson ones if and only if the conditional joint distribution of $X_1,\dots,X_n$ given $\Sigma X_i=K$ is the multinomial distribution (4). If we wish to test the hypothesis that $X_1,\dots,X_n$ are Poisson random variables we can use the conditional test (8). This test considered as an unconditional one is asymptotically the most powerful test against close binomial or negative binomial alternatives. The characterization of the Poisson distribution and its extensions for the binomial and the negative binomial distributions can be used to generate Poisson, binomial or negative binomial random numbers.
@article{TVP_1965_10_3_a6,
     author = {L. N. Bol'shev},
     title = {On a~characterization of the {Poisson} distribution and its statistical applications},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {488--499},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {1965},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1965_10_3_a6/}
}
TY  - JOUR
AU  - L. N. Bol'shev
TI  - On a~characterization of the Poisson distribution and its statistical applications
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1965
SP  - 488
EP  - 499
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1965_10_3_a6/
LA  - ru
ID  - TVP_1965_10_3_a6
ER  - 
%0 Journal Article
%A L. N. Bol'shev
%T On a~characterization of the Poisson distribution and its statistical applications
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1965
%P 488-499
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1965_10_3_a6/
%G ru
%F TVP_1965_10_3_a6
L. N. Bol'shev. On a~characterization of the Poisson distribution and its statistical applications. Teoriâ veroâtnostej i ee primeneniâ, Tome 10 (1965) no. 3, pp. 488-499. http://geodesic.mathdoc.fr/item/TVP_1965_10_3_a6/