К исследованию асимптотической мощности критериев согласия
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 10 (1965) no. 3, pp. 460-478
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $G_n^*(u)$ be the empirical distribution function of a sample of size $n$ from a distribution function $G(u)$, $0\le u\le1$, and $\beta_n(u)=\sqrt n(G_n^*(u)-u)$. It is proved, that if $G(u)=G_n(u)$ and $\sqrt n(G_n(u)-u)\to\delta(u)$ as $n\to\infty$, $\beta_n(u)$ converges to $\beta(u)+\delta(u)$ where $\beta(u)$ is the gaussian process with $\mathbf M\beta(u)=0$, $\mathbf M\beta(u)\beta(v)=\min(u,v)-uv$. The exact meanings of convergence are indicated in the statements of theorems. The results of this paper were published without proofs in [6].
			
            
            
            
          
        
      @article{TVP_1965_10_3_a4,
     author = {D. M. Chibisov},
     title = {{\CYRK} {\cyri}{\cyrs}{\cyrs}{\cyrl}{\cyre}{\cyrd}{\cyro}{\cyrv}{\cyra}{\cyrn}{\cyri}{\cyryu} {\cyra}{\cyrs}{\cyri}{\cyrm}{\cyrp}{\cyrt}{\cyro}{\cyrt}{\cyri}{\cyrch}{\cyre}{\cyrs}{\cyrk}{\cyro}{\cyrishrt} {\cyrm}{\cyro}{\cyrshch}{\cyrn}{\cyro}{\cyrs}{\cyrt}{\cyri} {\cyrk}{\cyrr}{\cyri}{\cyrt}{\cyre}{\cyrr}{\cyri}{\cyre}{\cyrv} {\cyrs}{\cyro}{\cyrg}{\cyrl}{\cyra}{\cyrs}{\cyri}{\cyrya}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {460--478},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {1965},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1965_10_3_a4/}
}
                      
                      
                    D. M. Chibisov. К исследованию асимптотической мощности критериев согласия. Teoriâ veroâtnostej i ee primeneniâ, Tome 10 (1965) no. 3, pp. 460-478. http://geodesic.mathdoc.fr/item/TVP_1965_10_3_a4/
