On the probability of the non-appearence of a given number of $s$-tuples in compound Markov chains
Teoriâ veroâtnostej i ee primeneniâ, Tome 10 (1965) no. 3, pp. 547-551
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\{j_r\}$, $r=\overline{1,n}$, $j_r=\overline{1,k}$ be a sequence obtained by realizations of $n$ trials which are bound into a compound Markov chain of order $s$ with $k$ outcomes. Let $s$-tuple denote a subsequence of $\{j_r\}$ consisting of $s$ consecutive symbols and let $P(n,k;m)$ be the probability that in the sequence $\{j_r\}$ of all possible $k^s$ $s$-tuples exactly $m$ $s$-tuples are missing. The asymptotic behaviour of the probability $P(n,k;m)$ as $n\to\infty$; $k\to\infty$; $k^re^{-n/k^s} is considered.
@article{TVP_1965_10_3_a15,
author = {P. F. Belyaev},
title = {On the probability of the non-appearence of a~given number of $s$-tuples in compound {Markov} chains},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {547--551},
year = {1965},
volume = {10},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1965_10_3_a15/}
}
TY - JOUR AU - P. F. Belyaev TI - On the probability of the non-appearence of a given number of $s$-tuples in compound Markov chains JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1965 SP - 547 EP - 551 VL - 10 IS - 3 UR - http://geodesic.mathdoc.fr/item/TVP_1965_10_3_a15/ LA - ru ID - TVP_1965_10_3_a15 ER -
P. F. Belyaev. On the probability of the non-appearence of a given number of $s$-tuples in compound Markov chains. Teoriâ veroâtnostej i ee primeneniâ, Tome 10 (1965) no. 3, pp. 547-551. http://geodesic.mathdoc.fr/item/TVP_1965_10_3_a15/