On an application of the connection between the Brownian motion and the Dirichlet problem
Teoriâ veroâtnostej i ee primeneniâ, Tome 10 (1965) no. 3, pp. 539-543
Cet article a éte moissonné depuis la source Math-Net.Ru
It is known that in the domain $G$ with a piecewise smooth boundary $\Gamma$ the solution $f(P)$ of the Dirichlet problem with continuous boundary values $f(S)$, $S\in\Gamma$ , can be represented in the form $$ f(P)=\int_\Gamma u(P,S)f(S)\,dS $$ where $u(P,S)$ is the probability density for a brownian particle to be absorbed at a point $S\in\Gamma$ starting from a point $P$ of the domain $G$ with the absorbing boundary $\Gamma$. It is shown that the construction of the function $u_0(P,S)$ for a domain $G_0$ which splits into two non-intersecting domains $G_1$ and $G_2$ with common boundary points and with known functions $u_1(P,S)$ and $u_2(P,S)$ is reduced to solving some Fredholm integral equation of the second kind. The uniqueness of the solution of this integral equation is proved.
@article{TVP_1965_10_3_a13,
author = {R. V. Ambartzumian},
title = {On an application of the connection between the {Brownian} motion and the {Dirichlet} problem},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {539--543},
year = {1965},
volume = {10},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1965_10_3_a13/}
}
TY - JOUR AU - R. V. Ambartzumian TI - On an application of the connection between the Brownian motion and the Dirichlet problem JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1965 SP - 539 EP - 543 VL - 10 IS - 3 UR - http://geodesic.mathdoc.fr/item/TVP_1965_10_3_a13/ LA - ru ID - TVP_1965_10_3_a13 ER -
R. V. Ambartzumian. On an application of the connection between the Brownian motion and the Dirichlet problem. Teoriâ veroâtnostej i ee primeneniâ, Tome 10 (1965) no. 3, pp. 539-543. http://geodesic.mathdoc.fr/item/TVP_1965_10_3_a13/