On the second moments of an estimate of the spectral function
Teoriâ veroâtnostej i ee primeneniâ, Tome 10 (1965) no. 3, pp. 536-539
Cet article a éte moissonné depuis la source Math-Net.Ru
A real stationary stochastic process $\{x_n\}$, $x_n=\sum_{k=-\infty}^\infty a_k\xi_{k+n}$ where $\xi_k$ are equally distributed independent random variables with $\mathbf E\xi_0=0$, $\mathbf E\xi_0^2=1$, $\mathbf E\xi_0^4<\infty$ and $\sum_{k=-\infty}^\infty a_k^2<\infty$ is considered. The asymptotic properties of the expression $$ \operatorname{cov}\biggl(\int_{-\pi}^\pi T_1(\lambda)Y_N(\lambda)\,d\lambda,\ \int_{-\pi}^\pi T_2(\lambda)Y_N(\lambda)\,d\lambda\biggr) $$ where $$ Y_N(\lambda)=\frac1{2\pi N}\biggl|\sum_{j=1}^Nx_je^{i\lambda j}\biggr|^2 $$ and $\operatorname{Var}T_i(\lambda)<\infty$ ($i=1,2$) are investigated.
@article{TVP_1965_10_3_a12,
author = {M. P. Shaifer},
title = {On the second moments of an estimate of the spectral function},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {536--539},
year = {1965},
volume = {10},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1965_10_3_a12/}
}
M. P. Shaifer. On the second moments of an estimate of the spectral function. Teoriâ veroâtnostej i ee primeneniâ, Tome 10 (1965) no. 3, pp. 536-539. http://geodesic.mathdoc.fr/item/TVP_1965_10_3_a12/