On the second moments of an estimate of the spectral function
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 10 (1965) no. 3, pp. 536-539
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A real stationary stochastic process $\{x_n\}$, $x_n=\sum_{k=-\infty}^\infty a_k\xi_{k+n}$ where $\xi_k$ are equally distributed independent random variables with $\mathbf E\xi_0=0$, $\mathbf E\xi_0^2=1$, $\mathbf E\xi_0^4\infty$ and $\sum_{k=-\infty}^\infty a_k^2\infty$ is considered. The asymptotic properties of the expression
$$
\operatorname{cov}\biggl(\int_{-\pi}^\pi T_1(\lambda)Y_N(\lambda)\,d\lambda,\ \int_{-\pi}^\pi T_2(\lambda)Y_N(\lambda)\,d\lambda\biggr)
$$
where
$$
Y_N(\lambda)=\frac1{2\pi N}\biggl|\sum_{j=1}^Nx_je^{i\lambda j}\biggr|^2
$$
and $\operatorname{Var}T_i(\lambda)\infty$ ($i=1,2$) are investigated.
			
            
            
            
          
        
      @article{TVP_1965_10_3_a12,
     author = {M. P. Shaifer},
     title = {On the second moments of an estimate of the spectral function},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {536--539},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {1965},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1965_10_3_a12/}
}
                      
                      
                    M. P. Shaifer. On the second moments of an estimate of the spectral function. Teoriâ veroâtnostej i ee primeneniâ, Tome 10 (1965) no. 3, pp. 536-539. http://geodesic.mathdoc.fr/item/TVP_1965_10_3_a12/
