On the second moments of an estimate of the spectral function
Teoriâ veroâtnostej i ee primeneniâ, Tome 10 (1965) no. 3, pp. 536-539

Voir la notice de l'article provenant de la source Math-Net.Ru

A real stationary stochastic process $\{x_n\}$, $x_n=\sum_{k=-\infty}^\infty a_k\xi_{k+n}$ where $\xi_k$ are equally distributed independent random variables with $\mathbf E\xi_0=0$, $\mathbf E\xi_0^2=1$, $\mathbf E\xi_0^4\infty$ and $\sum_{k=-\infty}^\infty a_k^2\infty$ is considered. The asymptotic properties of the expression $$ \operatorname{cov}\biggl(\int_{-\pi}^\pi T_1(\lambda)Y_N(\lambda)\,d\lambda,\ \int_{-\pi}^\pi T_2(\lambda)Y_N(\lambda)\,d\lambda\biggr) $$ where $$ Y_N(\lambda)=\frac1{2\pi N}\biggl|\sum_{j=1}^Nx_je^{i\lambda j}\biggr|^2 $$ and $\operatorname{Var}T_i(\lambda)\infty$ ($i=1,2$) are investigated.
@article{TVP_1965_10_3_a12,
     author = {M. P. Shaifer},
     title = {On the second moments of an estimate of the spectral function},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {536--539},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {1965},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1965_10_3_a12/}
}
TY  - JOUR
AU  - M. P. Shaifer
TI  - On the second moments of an estimate of the spectral function
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1965
SP  - 536
EP  - 539
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1965_10_3_a12/
LA  - ru
ID  - TVP_1965_10_3_a12
ER  - 
%0 Journal Article
%A M. P. Shaifer
%T On the second moments of an estimate of the spectral function
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1965
%P 536-539
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1965_10_3_a12/
%G ru
%F TVP_1965_10_3_a12
M. P. Shaifer. On the second moments of an estimate of the spectral function. Teoriâ veroâtnostej i ee primeneniâ, Tome 10 (1965) no. 3, pp. 536-539. http://geodesic.mathdoc.fr/item/TVP_1965_10_3_a12/