On the results of the asymptotic analysis in problems with boundaries
Teoriâ veroâtnostej i ee primeneniâ, Tome 10 (1965) no. 2, pp. 255-266

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper reviews the results of the asymptotic analysis in the boundary problems for random walks. Let $\xi_1,\xi_2,\dots$ be a sequence of independent identically distributed random variables $S_n=\sum_{k=1}^n\xi_k$ and let $g_n^-(t)$ ($0\le t\le1$) be two functions such that $g_n^\pm(t)/b_n\to g^\pm(t)$ for some $b_n\to\infty$ uniformly on $[0,1]$. Let $\eta_g$ be the first passade time of the random trajectory $\{k/n,S_k\}$, $k=\overline{1,n}$ out of the region $g_n$ contained between the curves $x=g_n^\pm(t)$, $0\le t\le1$: $$ \eta_g=1+\max\biggl\{k\colon g_n^-\biggl(\frac jn\biggr)^+\biggl(\frac jn\biggr),\quad j=0,1,\dots,k\le n\biggr\} $$ and $\chi_g$ be the value of the first jump over the boundary of $g_n$. The content of the article is the review of the results on limit theorems for the joint distributions of random variables $\eta_g$, $\chi_g$, $S_n$ as $n\to\infty$. The distributions of some other functionals of the trajectory $S_k$, $k=\overline{1,n}$ are also considered.
@article{TVP_1965_10_2_a2,
     author = {A. A. Borovkov and V. S. Korolyuk},
     title = {On the results of the asymptotic analysis in problems with boundaries},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {255--266},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {1965},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1965_10_2_a2/}
}
TY  - JOUR
AU  - A. A. Borovkov
AU  - V. S. Korolyuk
TI  - On the results of the asymptotic analysis in problems with boundaries
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1965
SP  - 255
EP  - 266
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1965_10_2_a2/
LA  - ru
ID  - TVP_1965_10_2_a2
ER  - 
%0 Journal Article
%A A. A. Borovkov
%A V. S. Korolyuk
%T On the results of the asymptotic analysis in problems with boundaries
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1965
%P 255-266
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1965_10_2_a2/
%G ru
%F TVP_1965_10_2_a2
A. A. Borovkov; V. S. Korolyuk. On the results of the asymptotic analysis in problems with boundaries. Teoriâ veroâtnostej i ee primeneniâ, Tome 10 (1965) no. 2, pp. 255-266. http://geodesic.mathdoc.fr/item/TVP_1965_10_2_a2/