On the results of the asymptotic analysis in problems with boundaries
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 10 (1965) no. 2, pp. 255-266
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The paper reviews the results of the asymptotic analysis in the boundary problems for random walks. Let $\xi_1,\xi_2,\dots$ be a sequence of independent identically distributed random variables $S_n=\sum_{k=1}^n\xi_k$ and let $g_n^-(t)$ ($0\le t\le1$) be two functions such that $g_n^\pm(t)/b_n\to g^\pm(t)$ for some $b_n\to\infty$ uniformly on $[0,1]$. Let $\eta_g$ be the first passade time of the random trajectory $\{k/n,S_k\}$, $k=\overline{1,n}$ out of the region $g_n$ contained between the curves $x=g_n^\pm(t)$, $0\le t\le1$:
$$
\eta_g=1+\max\biggl\{k\colon g_n^-\biggl(\frac jn\biggr)^+\biggl(\frac jn\biggr),\quad j=0,1,\dots,k\le n\biggr\}
$$
and $\chi_g$ be the value of the first jump over the boundary of $g_n$. The content of the article is the review of the results on limit theorems for the joint distributions of random variables $\eta_g$, $\chi_g$, $S_n$ as $n\to\infty$. The distributions of some other functionals of the trajectory $S_k$, $k=\overline{1,n}$ are also considered.
			
            
            
            
          
        
      @article{TVP_1965_10_2_a2,
     author = {A. A. Borovkov and V. S. Korolyuk},
     title = {On the results of the asymptotic analysis in problems with boundaries},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {255--266},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {1965},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1965_10_2_a2/}
}
                      
                      
                    TY - JOUR AU - A. A. Borovkov AU - V. S. Korolyuk TI - On the results of the asymptotic analysis in problems with boundaries JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1965 SP - 255 EP - 266 VL - 10 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1965_10_2_a2/ LA - ru ID - TVP_1965_10_2_a2 ER -
A. A. Borovkov; V. S. Korolyuk. On the results of the asymptotic analysis in problems with boundaries. Teoriâ veroâtnostej i ee primeneniâ, Tome 10 (1965) no. 2, pp. 255-266. http://geodesic.mathdoc.fr/item/TVP_1965_10_2_a2/
