On the results of the asymptotic analysis in problems with boundaries
Teoriâ veroâtnostej i ee primeneniâ, Tome 10 (1965) no. 2, pp. 255-266
Cet article a éte moissonné depuis la source Math-Net.Ru
The paper reviews the results of the asymptotic analysis in the boundary problems for random walks. Let $\xi_1,\xi_2,\dots$ be a sequence of independent identically distributed random variables $S_n=\sum_{k=1}^n\xi_k$ and let $g_n^-(t) ($0\le t\le1$) be two functions such that $g_n^\pm(t)/b_n\to g^\pm(t)$ for some $b_n\to\infty$ uniformly on $[0,1]$. Let $\eta_g$ be the first passade time of the random trajectory $\{k/n,S_k\}$, $k=\overline{1,n}$ out of the region $g_n$ contained between the curves $x=g_n^\pm(t)$, $0\le t\le1$: $$ \eta_g=1+\max\biggl\{k\colon g_n^-\biggl(\frac jn\biggr)<S_j<g_n^+\biggl(\frac jn\biggr),\quad j=0,1,\dots,k\le n\biggr\} $$ and $\chi_g$ be the value of the first jump over the boundary of $g_n$. The content of the article is the review of the results on limit theorems for the joint distributions of random variables $\eta_g$, $\chi_g$, $S_n$ as $n\to\infty$. The distributions of some other functionals of the trajectory $S_k$, $k=\overline{1,n}$ are also considered.
@article{TVP_1965_10_2_a2,
author = {A. A. Borovkov and V. S. Korolyuk},
title = {On the results of the asymptotic analysis in problems with boundaries},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {255--266},
year = {1965},
volume = {10},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1965_10_2_a2/}
}
A. A. Borovkov; V. S. Korolyuk. On the results of the asymptotic analysis in problems with boundaries. Teoriâ veroâtnostej i ee primeneniâ, Tome 10 (1965) no. 2, pp. 255-266. http://geodesic.mathdoc.fr/item/TVP_1965_10_2_a2/