On the maximum of a Gaussian stationary process
Teoriâ veroâtnostej i ee primeneniâ, Tome 10 (1965) no. 2, pp. 386-389 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a Gaussian real process $x(t)$ which satisfies the same conditions as in [1]. We prove the existence (a.s.) of such random number $t_0$ ($t_0<\infty$) that the inequality $$ |\max_{o\le u\le t}x(u)-\sigma\sqrt{2\ln t}|<\frac{(\sigma+\varepsilon)\ln\ln t}{\sqrt{2\ln t}} $$ is valid for all $t>t_0$ where $\varepsilon$ is any fixed positive number and $\sigma^2=\mathbf Mx^2(t)$.
@article{TVP_1965_10_2_a18,
     author = {M. G. \v{S}ur},
     title = {On the maximum of {a~Gaussian} stationary process},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {386--389},
     year = {1965},
     volume = {10},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1965_10_2_a18/}
}
TY  - JOUR
AU  - M. G. Šur
TI  - On the maximum of a Gaussian stationary process
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1965
SP  - 386
EP  - 389
VL  - 10
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_1965_10_2_a18/
LA  - ru
ID  - TVP_1965_10_2_a18
ER  - 
%0 Journal Article
%A M. G. Šur
%T On the maximum of a Gaussian stationary process
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1965
%P 386-389
%V 10
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_1965_10_2_a18/
%G ru
%F TVP_1965_10_2_a18
M. G. Šur. On the maximum of a Gaussian stationary process. Teoriâ veroâtnostej i ee primeneniâ, Tome 10 (1965) no. 2, pp. 386-389. http://geodesic.mathdoc.fr/item/TVP_1965_10_2_a18/