The existence of a~phase transition in the two- and three-dimensional Ising models
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 10 (1965) no. 2, pp. 209-230
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We prove that in the case of $\nu$-dimensional Ising models ($\nu>1$) the system exhibits a phase transiton if the equations (1.7) and (1.6) where $T$ is the temperature and $\nu$ is the specific volume hold true.
			
            
            
            
          
        
      @article{TVP_1965_10_2_a0,
     author = {R. L. Dobrushin},
     title = {The existence of a~phase transition in the two- and three-dimensional {Ising} models},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {209--230},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {1965},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1965_10_2_a0/}
}
                      
                      
                    TY - JOUR AU - R. L. Dobrushin TI - The existence of a~phase transition in the two- and three-dimensional Ising models JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1965 SP - 209 EP - 230 VL - 10 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1965_10_2_a0/ LA - ru ID - TVP_1965_10_2_a0 ER -
R. L. Dobrushin. The existence of a~phase transition in the two- and three-dimensional Ising models. Teoriâ veroâtnostej i ee primeneniâ, Tome 10 (1965) no. 2, pp. 209-230. http://geodesic.mathdoc.fr/item/TVP_1965_10_2_a0/
