On a Characteristic Property of the Normal Law
Teoriâ veroâtnostej i ee primeneniâ, Tome 9 (1964) no. 4, pp. 692-695
Cet article a éte moissonné depuis la source Math-Net.Ru
As it is well known the normal distribution is characterized by the uniformity of the distribution of the random vector $\biggl(\dfrac{X_1-\bar X}s,\dots,\dfrac{X_n-\bar X}s\biggr)$ on the unit sphere (here we use usual notations). It is shown that there exists a set of triplets of points of that sphere such that the normality of the sample follows from the constancy of the density of that vector only on any one of these triplets.
@article{TVP_1964_9_4_a8,
author = {A. A. Singer and Yu. V. Linnik},
title = {On {a~Characteristic} {Property} of the {Normal} {Law}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {692--695},
year = {1964},
volume = {9},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1964_9_4_a8/}
}
A. A. Singer; Yu. V. Linnik. On a Characteristic Property of the Normal Law. Teoriâ veroâtnostej i ee primeneniâ, Tome 9 (1964) no. 4, pp. 692-695. http://geodesic.mathdoc.fr/item/TVP_1964_9_4_a8/