On a~Characteristic Property of the Normal Law
Teoriâ veroâtnostej i ee primeneniâ, Tome 9 (1964) no. 4, pp. 692-695

Voir la notice de l'article provenant de la source Math-Net.Ru

As it is well known the normal distribution is characterized by the uniformity of the distribution of the random vector $\biggl(\dfrac{X_1-\bar X}s,\dots,\dfrac{X_n-\bar X}s\biggr)$ on the unit sphere (here we use usual notations). It is shown that there exists a set of triplets of points of that sphere such that the normality of the sample follows from the constancy of the density of that vector only on any one of these triplets.
@article{TVP_1964_9_4_a8,
     author = {A. A. Singer and Yu. V. Linnik},
     title = {On {a~Characteristic} {Property} of the {Normal} {Law}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {692--695},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {1964},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1964_9_4_a8/}
}
TY  - JOUR
AU  - A. A. Singer
AU  - Yu. V. Linnik
TI  - On a~Characteristic Property of the Normal Law
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1964
SP  - 692
EP  - 695
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1964_9_4_a8/
LA  - ru
ID  - TVP_1964_9_4_a8
ER  - 
%0 Journal Article
%A A. A. Singer
%A Yu. V. Linnik
%T On a~Characteristic Property of the Normal Law
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1964
%P 692-695
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1964_9_4_a8/
%G ru
%F TVP_1964_9_4_a8
A. A. Singer; Yu. V. Linnik. On a~Characteristic Property of the Normal Law. Teoriâ veroâtnostej i ee primeneniâ, Tome 9 (1964) no. 4, pp. 692-695. http://geodesic.mathdoc.fr/item/TVP_1964_9_4_a8/