On the Control of Non-Stopped Diffusion Processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 9 (1964) no. 4, pp. 655-669 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In Part I of the paper the mean cost for a unit of time arising from a non-terminating diffusion process, denoted by $\Theta$, is defined. One part of the cost originates from the motion inside the interval between two boundaries, the other part originates in the jumps from these boundaries. $\Theta$ is characterised by Theorem I. In Part II it is supposed that the diffusion coefficient and the coefficient of the local shift of the process depend on a control variable. The optimum $\hat\Theta$ of realizable mean costs may be determined by means of Theorem 2.
@article{TVP_1964_9_4_a5,
     author = {Petr Mandl},
     title = {On the {Control} of {Non-Stopped} {Diffusion} {Processes}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {655--669},
     year = {1964},
     volume = {9},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1964_9_4_a5/}
}
TY  - JOUR
AU  - Petr Mandl
TI  - On the Control of Non-Stopped Diffusion Processes
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1964
SP  - 655
EP  - 669
VL  - 9
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_1964_9_4_a5/
LA  - ru
ID  - TVP_1964_9_4_a5
ER  - 
%0 Journal Article
%A Petr Mandl
%T On the Control of Non-Stopped Diffusion Processes
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1964
%P 655-669
%V 9
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_1964_9_4_a5/
%G ru
%F TVP_1964_9_4_a5
Petr Mandl. On the Control of Non-Stopped Diffusion Processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 9 (1964) no. 4, pp. 655-669. http://geodesic.mathdoc.fr/item/TVP_1964_9_4_a5/